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Problem of stiffness maximization

Let us consider a problem to maximize a stiffness measure of some construction by manipulating
with material mechanics properties (i. e. choosing and changing a stiffness tensor). We search the
stiffness tensor from a set of accessible stiffness tensors that maximize a stiffness measure.
There is a first question at this place. What is the stiffness measure? It is great philosophy issue,

which is beyond the scope of this study, and therefore we select the following one:1

s(uuu) =
1

l(uuu)

where

l(uuu) =
∫

Ω

piui dΩ +
∫

∂Ωt

tiui dS,

is potencial energy of external loads and

ppp(xxx) =





px(xxx)
py(xxx)
pz(xxx)





are mass forces that act in Ω ⊂ �
3, xxx = (x, y, z) = (x1, x2, x3) ∈ Ω,

ttt(x) =





tx(xxx)
ty(xxx)
tz(xxx)





1See [Bendsøe, 1995] p. 7., [Mareš and Holý, 2002], [Mareš, 2002], [Mareš, 2003a], [Mareš, 2003b].
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are surface forces acting on boundary part ∂Ωt ⊂ ∂Ω. Displacements are denoted by

uuu(xxx) =





ux(xxx)
uy(xxx)
uz(xxx)



 .

Principle of minimum potential energy states that2 among all the admissible displacements
which satisfy the prescibed geometrical boundary conditions, the actual displacements minimize the

total potential energy:

Π(uuu) = a(uuu,uuu)− l(uuu), (1)

where

a(uuu) = a(uuu,uuu) =
1
2

∫

Ω

Eijkl(xxx) · εij(uuu(xxx)) · εkl(uuu(xxx)) dΩ

is elastic potential energy,
σij(uuu(xxx)) = Eijkl(xxx) · εkl(uuu(xxx))

is generalized Hooke’s Law and

εij(uuu(xxx)) =
1
2
(ui,j(xxx) + uj,i(xxx))

is Cauchy’s tensor for small displacements.
For the actual displacements ûuu holds

ûuu = arg min
uuu∈ � Π(uuu),

where � is the set of all the admissible displacements which satisfy the prescibed geometrical boun-
dary conditions.
It is also

Π(ûuu) = a(ûuu, ûuu)− l(ûuu) = min
uuu∈ � Π(uuu) = minuuu∈ � (a(uuu,uuu)− l(uuu)).

From the theory of variational methods3 it is known that in a equilibrium state

min
u
Π =

1
2
(Aû, û)− (f, û) ∧ (Aû, û) = (f, û) ⇒ Π(û) = min

u
Π = −1

2
(f, û) = −1

2
l(û)

and hence
Π(ûuu) = −1

2
l(ûuu) < 0.

Since for ÊEE that both maximize stiffness measure and minimize compliance measure

ÊEE = argmin
EEE

l(ûuu) = argmax
EEE

(

−1
2
l(ûuu)

)

=

= argmax
EEE
(a(ûuu, ûuu)− l(ûuu)) = argmax

EEE
min

uuu
(a(uuu,uuu)− l(uuu))

is valid, we may, if we search stiffness tensor ÊEE = {Êijkl(xxx)} that minimize compliance measure l(uuu),
solve the problem

{ÊEE, ûuu} = argmax
EEE∈ � minuuu∈ � (a(uuu,uuu)− l(uuu)), (2)

where
�
is set of acceptable stiffness tensors and � is set of all the admissible displacements which

satisfy the prescibed geometrical boundary conditions.

2[Washizu, 1975] p. 27.
3See for e.g. [ �����
	����	 , 1987] and [Bendsøe, 1995].
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At topology design the set
�
contains stiffness tensor of given isotropy material Eijkl and null

material, i.e., stiffness tensor with zero components. It is

Eijkl = δ(xxx)E0ijkl,

where

δ(xxx) =

{

1 at the point xxx with material,
0 at the point xxx without material.

Volume (weight) constraint is given by
∫

Ω

δ(xxx) dΩ ≤ V0.

In this case the indicate function δ(xxx) is the only one design variable.
In the case of linear elastic material it is posible to write the last problem by using the comple-

mentary energy as

{ĈCC, σ̂σσ} = arg min
CCC∈ � minσσσ∈ �

(

1
2

∫

Ω

Cijklσijσkl dΩ
)

, (3)

where the set of all statically admissible stresses
�
= {σij | σij,i + pj = 0 na Ω ∧ σij · `j = ti na ∂Ωt} ,

at this `j(xxx) is directional cosinus of outward normal to boundary ∂Ω of domain Ω at xxx ∈ ∂Ωt and
CCC = {Cijkl} is compliance tensor from where the set of all admissible compliance tensors � . It holds
that

εij = Cijklσkl.

Constitutive law of thin laminate ply

Generalized Hooke’s Law for laminate ply

x

z

y

a

b

−z1

z1

−z2

z2

−z3 = z−3

z3

α3

ν = −3
ν = −2
ν = −1

ν = 3
ν = 2
ν = 1

Fig. 2: Laminate plate composed of 2N = 2 · 3 orthotropic symetrically laid plies

Constitutive law of thin laminate ply in the main material coordinate system xν–yν of νth ortho-
tropic ply is given by4





σν
11

σν
22

σν
12



 =





Qν
11 Qν

12 0
Qν
12 Qν

22 0
0 0 2Gν

12









εν
11

εν
22

εν
12



 , (4)

4[Gürdal et al., 1999] pp. 53, 63.
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x

y

xν

yν

αν

ν

Fig. 3: Global coordinate system x–y and main material coordinate system xν–yν

where

Qν
11 =

Eν
1

1− νν
12ν

ν
21

, νν
21 = νν

12

Eν
2

Eν
1

, (5)

Qν
22 =

Eν
2

1− νν
12ν

ν
21

, Qν
12 =

νν
12E2

1− νν
12ν

ν
21

, (6)

and where (ν = 1, 2, . . . , N) is the sign of ply sequence from the center of plate, and Eν
1 , E

ν
2 a Gν

12

are moduli of elasticity in the major direction, in the minor direction of the νth ply, and modulus of
elasticity in shear of the νth ply, respectively. For major Poisson ratio ν12 in the case of loading in
only major direction xν it holds

ν12 = −ε2

ε1
.

Likewise for minor Poisson ratio in the case of loading in only minor direction yν

ν21 = −ε1

ε2
.

It also holds
ν12

E1
=

ν21

E2
.

Constitutive law in two-dimensinal tensor notation

We consider the plane stress state for the formulation of constitutive law. Let us introduce stress
tensor and strain tensor of νth ply at main material coordinate system of νth orthotropic ply xν–yν

by5

{σν
ij} =

(

σν
11 σν

12

σν
21 σν

22

)

=
(

σν
xx σν

xy

σν
yx σν

yy

)

,

{εν
ij} =

(

εν
11 εν

12

εν
21 εν

22

)

=

(

εν
xx εν

xy

εν
yx εν

yy

)

,

where alternatively, as in the future, we use equivalent indexing 11 or xx. Relation of stress–strain
at main material coordinate system of νth orthotropic ply have form

σν
ij = Eν

ijklε
ν
kl,

5See [Mareš, 2002], [Mareš, 2003a], [Mareš, 2003b], [Mareš, 2004].
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where

{Eν
ijkl}ijdkl =









Qν
11 0 0 Qν

12

0 Gν
12 Gν

12 0
0 Gν

12 Gν
12 0

Qν
12 0 0 Qν

22









, (7)

and right-low index ijdkl says that rows of the matrix are related to (ij = 11, 12, 21, 22) and columns
to (kl = 11, 12, 21, 22). This stress–strain relation is evident from following expanding of relations
(4):

σν
11 = Qν

11ε
ν
11 +Qν

12ε
ν
22

σν
22 = Qν

12ε
ν
11 +Qν

22ε
ν
22

σν
12 = σν

21 = Gν
12ε

ν
12 +Gν

12ε
ν
21 = 2G

ν
12ε

ν
12 = 2G

ν
12ε

ν
21 (ε12 = ε21).

By tranforming these expression of stress and strain tensors from main material coordinate system
of νth orthotropic ply xν–yν into global coordinate system of laminate plate x–y we state the stress
tensor of νth ply in the global coordinate system x–y

σij(x, y, z) = `ν
ik`

ν
jlσ

ν
kl

∀ z ∈ 〈zν−1, zν〉 if ν > 0,
∀ z ∈ 〈zν , zν+1〉 if ν < 0,

as function of strain tensor of νth ply in the global coordinate system x–y

εij(x, y, z) = `ν
ik`

ν
jlε

ν
kl

∀ z ∈ 〈zν−1, zν〉 if ν > 0,
∀ z ∈ 〈zν, zν+1〉 if ν < 0.

(8)

Transformation matrix has (see Figure 3) the form

{`ν
ik}idk = {`ik(αν)}idk = {cos(xi, x

ν
k)}idk =

(

cos(x, xν) cos(x, yν)
cos(y, xν) cos(y, yν)

)

=
(

cosαν sinαν

− sinαν cosαν

)

. (9)

Since
`ν
ik`

ν
jk = δij

and
`ν
ki`

ν
kj = δij,

where Kronecker δ

δkl =
{

1 for l = k,

0 for l 6= k,

we have, using production of both sides of equality (8) by expression `ν
im`ν

jn, inverse transformation
relation

εν(z)
mn (x, y, z) = `

ν(z)
im `

ν(z)
jn εij(x, y, z),

where tensor `ν
im belongs to νth ply with ν = ν(z) as follows: z ∈ 〈zν−1, zν〉 if z > 0, and if z < 0

then z ∈ 〈zν, zν+1〉.
Using the equations

σij(x, y, z) = `
ν(z)
im `

ν(z)
jn σν(z)

mn = `
ν(z)
im `

ν(z)
jn Eν(z)

mnopε
ν(z)
op ,

the searched relation between stress tensor of νth ply in the global coordinate system and strain
tensor of νth ply in the global coordinate system takes the form of constitutive law of thin laminate
ply:

σij(x, y, z) = `
ν(z)
im `

ν(z)
jn Eν(z)

mnop`
ν(z)
ko `

ν(z)
lp εkl(x, y, z).
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x̄

ȳ

z̄

Fig. 4: Carthesian coordinate system x̄ȳz̄ of the tube

x̄

ȳ

z̄

ϑ

r

t

Fig. 5: Cylindrical coordinate system rtz̄ of the tube

Optimization of laminate tube winding angle

Used coordinate systems

Transformation of two-dimensional stress tensor and strain tensor from the main mate-
rial coordinate system into global coordinate system of the unrolled tube

At this subsection we put transformation of two-dimensional stress tensor σν
ij and strain tensor εν

mn

in the main material coordinate system xν–yν into global coordinate system of the unrolled tube x–y
(at which we denote them as σij, εkl).
From above it is

σij = `ν
ik`

ν
jlσ

ν
kl,

where

{`ν
ik}idk =

(

cosαν sinαν

− sinαν cosαν

)

.

Once more from above
εν

mn = `ν
im`ν

jnεij.

Thin tube (tube made from one orthotropic ply)

Premises

• Tube is made from one orthotropic ply (ν = 1).



Bulletin of Applied Mechanics 1, 29–54 (2005) 35

x̄

z̄

ϑ

r

t

A

α

fiber under
angle α

2R

l

unfolded tube

α

l

t ‖ y

2πR

z̄ ‖ x
α

A
−z⊗ ‖ r�

Fig. 6: Global coordinate system xyz of the unrolled tube
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Fig. 7: Main material coordinate system xνyνzν of νth orthotropic ply

• Hooke’s law of that ply in the main material coordinate system xν–yν takes the form σν
ij =

Eν
ijklε

ν
kl.

• We do not consider buckling.

• Ply thickness is negligible with respect to radius of tube: cylindrical coordinate system rtz̄ of
the tube coincide whit global coordinate system of the unrolled tube (xyz).

Torsion

We consider that buckling does not happen and that moment of torsion Mk is transmited by shear
stress σz̄t. Let this stress be (for the ply is thin-walled) constant throughout the cross-section, i.e.

Mk = 2πRTσz̄tR.
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x̄

ȳ

z̄
Mk

R

T

Fig. 8: One-ply laminate tube under torsion
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t
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�
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Fig. 9: Stress σz̄t in the one-ply laminate tube under torsion

At the global coordinate system of the unrolled tube (system xyz) the stress σz̄t is equivalent to
component σxy of stress tensor. The others component are null. Hence

{σij}idj =

(

0 σxy

σxy 0

)

.

Tension

x̄

ȳ

z̄
N

R

T

Fig. 10: One-ply laminate tube under tension
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Let us consider
N = 2πRTσz̄z̄,

for σz̄z̄ constant throughout the cross-section.
At the global coordinate system of the unrolled tube (system xyz) the stress σz̄z̄ is equivalent

to component σxx of stress tensor. At the global coordinate system xyz the stress tensor takes (for
simple tension) form

{σij}idj =
(

σxx 0
0 0

)

.

Bending

x̄

ȳ

z̄

R

T

Mox̄

ȳ

σz̄

σ0

z̄

⊕

	

Fig. 11: One-ply laminate tube under bending

With the well-known assumption about linear distribution of stress under bending we have

Mox̄ =
∫

A

σ0z̄ ·
ȳ

R
· ȳ dA = σ0z̄

R
Jx̄,

and thus

σ0z̄ =
Mox̄

Jx̄

R

and

σz̄ =
Mox̄

Jx̄

ȳ.

Also at this case it is σxx = σz̄ and at the global coordinate system xyz

{σij}idj =
(

σxx 0
0 0

)

.

However we do not consider this case here since from the optimization point of view it is not
diferent from the tension case.

Winding angle that maximize tube stiffness

Let us consider the above problem

{ĈCC, σ̂σσ} = argmin
CCC∈ � minσσσ∈ �

1
2

∫

Ω

Cijklσijσkl dΩ, (10)

where �
= {σij | σij,i + pj = 0 na Ω, σij`j = ti na ∂tΩ}

and where � is a set of acceptable compliance tensors.
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Compliance tensor of laminate ply ν

For the ply at the main material coordinate system xν–yν the following form holds

εν
ij = Cν

ijklσ
ν
kl.

From above we have

εν
21 = εν

12 =
σν
12

2G12
=

σν
21

2G12
(σν
12 = σν

21),

εν
21 = εν

12 =
1
4G12

· σν
12 +

1
4G12

· σν
21

and
σν
11 = Qν

11ε
ν
11 +Qν

12ε
ν
22,

σν
22 = Qν

12ε
ν
11 +Qν

22ε
ν
22,

from that
Qν
22σ

ν
11 − Qν

12σ
ν
22 = (Q

ν
11Q

ν
22 − Qν

12Q
ν
12) ε

ν
11,

Qν
11σ

ν
22 − Qν

12σ
ν
11 = (Q

ν
11Q

ν
22 − Qν

12Q
ν
12) ε

ν
22

yielding








εν
11

εν
12

εν
21

εν
22









=









Cν
1111 0 0 Cν

1122

0 Cν
1212 Cν

1221 0
0 Cν

2112 Cν
2121 0

Cν
2211 0 0 Cν

2222

















σν
11

σν
12

σν
21

σν
22









,

where

Cν
1111 =

Qν
22

Qν
11Q

ν
22 − Qν

12Q
ν
12

= cν
1,

Cν
1122 = Cν

2211 =
Qν
12

Qν
12Q

ν
12 − Qν

11Q
ν
22

= cν
12,

Cν
2222 =

Qν
11

Qν
11Q

ν
22 − Qν

12Q
ν
12

= cν
2,

Cν
1212 = Cν

1221 = Cν
2112 = Cν

2121 =
1
4Gν
12

= gν.

Note: If
Qν
11Q

ν
22 − Qν

12Q
ν
12 < 0

then it is unusual material: Negative Poisson’s ratio.6

For r respective z from ply ν we have (at the global coordinate system xyz)

εij(x, y, z) = Cijkl(z)σkl(x, y, z),

εij(x, y, z) = `
ν(z)
ik `

ν(z)
jl ε

ν(z)
kl (x, y, z) = `

ν(z)
ik `

ν(z)
jl C

ν(z)
klmnσ

ν(z)
mn (x, y, z),

εij(x, y, z) = `
ν(z)
ik `

ν(z)
jl C

ν(z)
klmn`ν(z)

om `ν(z)
pn σop(x, y, z),

or, at the form εij(x, y, z) = Cijkl(z)σkl(x, y, z), as folowing

εij(x, y, z) = `
ν(z)
im `

ν(z)
jn Cν(z)

mnop`
ν(z)
ko `

ν(z)
lp σkl(x, y, z).

From that we obtain
Cijkl(z) = `

ν(z)
im `

ν(z)
jn Cν(z)

mnop`
ν(z)
ko `

ν(z)
lp .

6See for example [Friis et al., 1988].
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Single Ply Laminate Tube under Tension, Torsion and Interior Pressure

At this place we investigate problem

{

ĈCC, σ̂σσ
}

= argmin
CCC∈ � minσσσ∈ �

1
2

∫

Ω

Cijklσijσkl dΩ, (11)

where � is the set of acceptable compliance tensors.
�
=

{

σxx =
N

2πRt
, σyy =

pR

t
, σxy =

Mk

2πR2t

}

.

For the compliance tensor Cijkl at global coordinate system (for r ∈ 〈R+(ν − 1)t, R+ νt〉 i.e. for
νth ply) it holds that

Cijklσijσkl = `ν
im`ν

jn`ν
ko`

ν
lpC

ν
mnopσijσkl

with
`ν
im = δimcν + εimsν,

where
cν = cosαν , sν = sinαν.

Consequently

Cijklσijσkl =
(

c4νδ
ν
imδν

jnδ
ν
koδ

ν
lp + c3νsν

(

εν
imδν

jnδ
ν
koδ

ν
lp + δν

imεν
jnδν

koδ
ν
lp + δν

imδν
jnεν

koδ
ν
lp + δν

imδν
jnδ

ν
koε

ν
lp

)

+

+c2νs
2
ν

(

εν
imεν

jnδν
koδ

ν
lp + εν

imδν
jnεν

koδ
ν
lp + εν

imδν
jnδ

ν
koε

ν
lp + δν

imεν
jnεν

koδ
ν
lp + δν

imεν
jnδν

koε
ν
lp + δν

imδν
jnεν

koε
ν
lp

)

+

+cνs
3
ν

(

δν
imεν

jnεν
koε

ν
lp + εν

imδν
jnεν

koε
ν
lp + εν

imεν
jnδν

koε
ν
lp + εν

imεν
jnεν

koδ
ν
lp

)

+ s4νε
ν
imεν

jnεν
koε

ν
lp

)

Cν
mnopσijσkl.

Let us write
Cijklσijσkl = R

1νc4ν +R
2νc3νsν +R

3νc2νs
2
ν +R

4νc1νs
3
ν +R

5νs4ν, (12)

where coefficients R%ν (% = 1, 2, . . . , 5) are assembled as follows:

R
1ν = Cν

ijklσijσkl.

R
2ν =

(

εimCν
mjkl + εjnC

ν
inkl + εkoC

ν
ijol + εlpC

ν
ijkp

)

σijσkl

and, since Cν
mnop = Cν

opmn = Cν
pomn and σij = σji, it is

R
2ν = 4εimCν

mjklσijσkl.

Coefficient of term c2νs
2
ν:

R
3ν = Cν

mnopσijσkl ((δijδmn − δinδjm) δkoδlp + (δikδmo − δioδmk) δjnδlp + (δilδmp − δipδml) δjnδko+

+(δjkδno − δjoδnk) δimδlp + (δjnδnp − δjpδnl) δimδko + (δklδop − δkpδol) δimδjn) ,

R
3ν = Cν

mmklσiiσkl −Cν
ijklσijσkl+Cν

mjmlσkjσkl −Cν
kjilσijσkl+Cν

mjkmσijσki −Cν
ljkiσijσkl+Cν

innlσikσkl−
−Cν

ikjlσijσkl + Cν
ipkpσijσkj − Cν

ilkjσijσkl + Cν
ijppσijσkk − Cν

ijlkσijσkl,

R
3ν = 2Cν

mmklσiiσkl − 2Cν
ijklσijσkl + 4Cν

mjmlσkjσkl − 4Cν
kjilσijσkl,

and finally
R
3ν =

(

2Cν
mmklδij − 2Cν

ijkl + 4C
ν
mjmlδik − 4Cν

kjil

)

σijσkl.

For R4ν it holds

R
4ν = Cν

mnopσijσkl ((δklδop − δkpδol) δimεjn + (δklδop − δkpδol) εimδjn+
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+(δjlδnp − δjpδnl) εimδko + (δjkδno − δjoδnk) εimδlp) ,

R
4ν = εjnCν

inppσijσkk − εjnCν
inklσijσkl + εimCν

mjppσijσkk − εimCν
mjklσijσkl + εimCν

mpkpσilσkl−

−εimCν
mlkjσijσkl + εimCν

moolσikσkl − εimCν
mkjlσijσkl,

R
4ν = εim

(

2Cν
jmppσijσkk + 2Cν

mppkσilσkl − 2Cν
jmklσijσkl − 2Cν

mlkjσijσkl

)

,

R
4ν = εim

(

2Cν
jmppδkl + 2Cν

mppkδjl − 2Cν
jmkl − 2Cν

mlkj

)

σijσkl.

At last
R
5ν = εimεjnεkoεlpC

ν
mnopσijσkl,

R
5ν = (δijδmn − δinδmj) (δklδop − δkpδol)Cν

mnopσijσkl,

R
5ν = Cν

mmppσiiσkk + Cν
ijklσijσkl − Cν

ijppσijσkk − Cν
mmklσiiσkl,

R
5ν = Cν

mmppσiiσkk + Cν
ijklσijσkl − 2Cν

ijppσijσkk,

R
5ν =

(

Cν
mmppδijδkl + Cν

ijkl − 2Cν
ijppδkl

)

σijσkl.

At the case of one-ply tube the set
�
has only one component (the solution σ̂σσ is known). Accor-

dingly the coefficients R%ν are known numbers and the problem (11) has the form

α̂αα = arg min
αν∈〈−

π
2
, π
2
〉

V

2

(

R
1νc4ν +R

2νc3νsν +R
3νc2νs

2
ν +R

4νcνs
3
ν +R

5νs4ν
)

,

where V is the tube volume.
The necessary condition

∂(·)
∂αν

= 0

has the form

R
2νc4ν +

(

2R3ν − 4R1ν
)

c3νsν +
(

3R4ν − 3R2ν
)

c2νs
2
ν +

(

4R5ν − 2R3ν
)

cνs
3
ν − R

4νs4ν = 0. (13)

If sν = 0, it is cν = ±1 and R
2ν = 0. It is not truth. Hence it is not sν = 0. If cν = 0, it is sν = ±1

and R4ν = 0. It also is not truth. Therefore it is not cν = 0. Since cνsν 6= 0 we may divide equation
(13) by c4ν, from that

S
1νtg4αν +S

2νtg3αν +S
3νtg2αν +S

4νtgαν +S
5ν = 0, (14)

where
S
1ν = −R

4ν = −R
4ν
ijklσijσkl,

hereat
R
4ν
ijkl = 2εim

(

Cν
jmppδkl + Cν

mppkδjl − Cν
jmkl − Cν

mlkj

)

,

{

Cν
mjkl

}

mjdkl
=









cν
1 0 0 cν

12

0 gν gν 0
0 gν gν 0

cν
12 0 0 cν

2









,

{

Cν
mlkj

}

mjdkl
=









cν
1 0 0 gν

0 gν cν
12 0

0 cν
12 gν 0

gν 0 0 cν
2









,
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{

Cν
mjpp

}

mjd
=









cν
1 + cν

12

0
0

cν
12 + cν

2









,

{

Cν
mppk

}

mdk
=

(

cν
1 + gν 0
0 gν + cν

2

)

,

and then

{

Cν
jmppδkl + Cν

mppkδjl − Cν
jmkl − Cν

mlkj

}

mjdkl
=









cν
12 + gν 0 0 cν

1 − gν

0 cν
1 − gν −cν

12 − gν 0
0 −cν

12 − gν cν
2 − gν 0

cν
2 − gν 0 0 cν

12 + gν









,

{

R
4ν
ijkl

}

ijdkl
=









0 −2cν
12 − 2gν 2cν

2 − 2gν 0
2cν
2 − 2gν 0 0 2cν

12 + 2g
ν

−2cν
12 − 2gν 0 0 −2cν

1 + 2g
ν

0 −2cν
1 + 2g

ν 2cν
12 + 2g

ν 0









.

Since

{σijσkl}ijdkl
=









σ2xx σxxσxy σxxσxy σxxσyy

σxxσxy σ2xy σ2xy σxyσyy

σxxσxy σ2xy σ2xy σxyσyy

σyyσxx σyyσxy σyyσxy σ2yy









finally it is
S
1ν = 2σxxσxy (4gν + 2cν

12 − 2cν
2) + 2σyyσxy (−4gν − 2cν

12 + 2c
ν
1) .

Furthermore we have
S
2ν = 4R5ν − 2R3ν , (15)

where
R
5ν = R

5ν
ijklσijσkl,

R
5ν
ijkl =

(

Cν
mmppδijδkl + Cν

ijkl − 2Cν
ijppδkl

)

and
Cν

mmpp = cν
1 + 2c

ν
12 + cν

2,

{

Cν
ijpp

}

ijd
=









cν
1 + cν

12

0
0

cν
12 + cν

2









,

from which

{

R
5ν
ijkl

}

ijdkl
=









cν
2 0 0 −cν

1 + cν
12 + cν

2

0 gν gν 0
0 gν gν 0

cν
1 + cν

12 − cν
2 0 0 cν

1









and
R
5ν = cν

2σ
2
xx + 4g

νσ2xy + cν
1σ
2
yy + 2c

ν
12σxxσyy .

For coefficient R3ν it is
R
3ν = R

3ν
ijklσijσkl,

where
R
3ν
ijkl = 2C

ν
mmklδij + 4Cν

mjmlδik − 2Cν
ijkl − 4Cν

kjil,
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from which

{

R
3ν
ijkl

}

ijdkl
=









2cν
12 + 4g

ν 0 0 2cν
2 − 4gν

0 4cν
2 − 2gν −4cν

12 − 2gν 0
0 −4cν

12 − 2gν 4cν
1 − 2gν 0

2cν
1 − 4gν 0 0 2cν

12 + 4g
ν









and hence

R
3ν = σ2xx (2c

ν
12 + 4g

ν) + σ2xy (4c
ν
2 − 8gν − 8cν

12 + 4c
ν
1) + σ2yy (2c

ν
12 + 4g

ν) + σxxσyy (2c
ν
2 − 8gν + 2cν

1) .

Finally from (15) and from above

S2ν = σ2xx (4c
ν
2 − 4cν

12 − 8gν) + σ2xy (32g
ν − 8cν

2 + 16c
ν
12 − 8cν

1)+

+σ2yy (4c
ν
1 − 4cν

12 − 8gν) + σxxσyy (16gν − 4cν
2 + 8c

ν
12 − 4cν

1) .

At the case of S3ν we have
S
3ν = 3R4ν − 3R2ν .

From above
R
4ν = 4σxxσxy (cν

2 − cν
12 − 2gν) + 4σyyσxy (−cν

1 + cν
12 + 2g

ν)

R
2ν = R

2ν
ijklσijσkl,

R
2ν
ijkl = 4εimCν

mjkl,

and

{

R
2ν
ijkl

}

ijdkl
=









0 4gν 4gν 0
4cν
12 0 0 4cν

2

−4cν
1 0 0 −4cν

12

0 −4gν −4gν 0









.

Again
R
2ν = σxxσxy (8gν + 4cν

12 − 4cν
1) + σyyσxy (−8gν − 4cν

12 + 4c
ν
2)

and hence

S
3ν = 12σxxσxy (cν

2 − 2cν
12 − 4gν + cν

1) + 12σyyσxy (−cν
2 + 2c

ν
12 + 4g

ν − cν
1) .

For fourth coefficient of condition (14) it is

S
4ν =

(

2R3ν − 4R1ν
)

,

where

R
3ν = σ2xx (2c

ν
12 + 4g

ν) + σ2xy (4c
ν
2 − 8gν − 8cν

12 + 4c
ν
1) + σ2yy (2c

ν
12 + 4g

ν) + σxxσyy (2cν
1 − 8gν + 2cν

2)

and
R
1ν = Cν

ijklσklσij,

it, according to above, is

R
1ν = cν

1σ
2
xx + 4g

νσ2xy + cν
2σ
2
yy + 2c

ν
12σxxσyy.

Thus

S
4ν = 4σ2xx (c

ν
12 + 2g

ν − cν
1)+8σ

2
xy (c

ν
2 − 4gν − 2cν

12 + cν
1)+4σ

2
yy (c

ν
12 + 2g

ν − cν
2)+4σxxσyy (cν

2 − 4gν − 2cν
12 + cν

1) .

Finally
S
5ν = R

2ν ,

and from above

S
5ν = σxxσxy (8gν + 4cν

12 − 4cν
1) + σyyσxy (−8gν − 4cν

12 + 4c
ν
2) .
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Recapitulation of necessary condition

The necessary condition has form

S
1νtg4αν +S

2νtg3αν +S
3νtg2αν +S

4νtgαν +S
5ν = 0, (16)

where

S
1ν = 4σxxσxy (2gν + cν

12 − cν
2) + 4σyyσxy (−2gν − cν

12 + cν
1) ,

S2ν = σ2xx (4c
ν
2 − 4cν

12 − 8gν) + σ2xy (32g
ν − 8cν

2 + 16c
ν
12 − 8cν

1)+

+σ2yy (4c
ν
1 − 4cν

12 − 8gν) + σxxσyy (16gν − 4cν
2 + 8c

ν
12 − 4cν

1) .

S
3ν = 12σxxσxy (cν

2 − 2cν
12 − 4gν + cν

1) + 12σyyσxy (−cν
2 + 2c

ν
12 + 4g

ν − cν
1) .

S
4ν = 4σ2xx (c

ν
12 + 2g

ν − cν
1)+8σ

2
xy (c

ν
2 − 4gν − 2cν

12 + cν
1)+4σ

2
yy (c

ν
12 + 2g

ν − cν
2)+4σxxσyy (cν

2 − 4gν − 2cν
12 + cν

1) .

S
5ν = σxxσxy (8gν + 4cν

12 − 4cν
1) + σyyσxy (−8gν − 4cν

12 + 4c
ν
2) .

Solution of the problem

Eν
1 = 181GPa

Eν
2 = 10,3GPa

Gν
12 = 7,17GPa

νν
12 = 0,28

Table 1: Graphite-epoxy laminate ply material characteristics

For the cited material (Kevlar-Epoxy, vide Table 1) see following tables. There is dependance of
searched winding angle with respect to given loading state σxx, σyy and σxy.

σyydσxy 0 10 MPa 20 30 MPa 40 50 MPa 60 70 MPa 80 90 MPa 100

0 MPa 0 -5.65 -10.90 -15.48 -19.33 -22.50 -25.01 -27.23 -29.00 -30.47 -31.72

10 MPa 0 -6.26 -11.98 -16.85 -20.82 -24.01 -26.57 -28.63 -30.32 -31.72 -32.89

20 MPa 0 -7.02 -13.28 -18.43 -22.50 -25.67 -28.15 -30.13 -31.72 -33.02 -34.10

30 MPa 0 -7.97 -14.87 -20.30 -24.41 -27.50 -29.87 -31.72 -33.19 -34.37 -35.35

40 MPa 0 -9.22 -16.85 -22.50 -26.57 -29.52 -31.72 -33.40 -34.72 -35.78 -36.65

50 MPa 0 -10.90 -19.33 -25.10 -29.00 -31.72 -33.70 -35.17 -36.32 -37.24 -37.98

60 MPa 0 -13.28 -22.50 -28.15 -31.72 -34.10 -35.78 -37.03 -37.98 -38.74 -39.35

70 MPa 0 -16.85 -26.57 -31.72 -34.72 -36.65 -37.98 -38.95 -39.69 -40.27 -40.73

80 MPa 0 -22.50 -31.72 -35.78 -37.98 -39.35 -40.27 -40.93 -41.44 -41.83 -42.14

90 MPa 0 -31.72 -37.98 -40.27 -41.44 -42.14 -42.62 -42.96 -43.21 -43.41 -43.57

100 MPa -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45

Table 2: Optimum winding angle α [◦] versus loading stress σxx = 100 MPa and σxy [MPa], σyy [MPa]
from table
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σyydσxy 0 10 MPa 20 MPa 30 MPa 40 MPa 50 MPa 60 MPa 70 MPa 80 MPa 90 MPa 100

0 0 -10.90 -19.33 -25.10 -29.00 -31.72 -33.69 -35.17 -36.32 -37.24 -37.98

10 MPa 0 -13.28 -22.50 -28.15 -31.72 -34.10 -35.78 -37.03 -37.98 -38.74 -39.35

20 MPa 0 -16.85 -26.57 -31.72 -34.72 -36.65 -37.98 -38.95 -39.69 -40.27 -40.73

30 MPa 0 -22.50 -31.72 -35.78 -37.98 -39.35 -40.27 -40.93 -41.44 -41.83 -42.14

40 MPa 0 -31.72 -37.98 -40.27 -41.44 -42.14 -42.62 -42.96 -43.21 -43.41 -43.57

50 MPa -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45

60 MPa -90 -58.28 -52.02 -49.73 -48.56 -47.86 -47.38 -47.04 -46.79 -46.59 -46.43

70 MPa -90 -67.50 -58.28 -54.22 -52.02 -50.65 -49.73 -49.07 -48.56 -48.17 -47.855

80 MPa -90 -73.15 -63.43 -58.28 -55.28 -53.35 -52.02 -51.05 -50.31 -49.73 -49.27

90 MPa -90 -76.72 -67.50 -61.85 -58.28 -55.90 -54.22 -52.97 -52.02 -51.26 -50.65

100 MPa -90 -79.10 -70.67 -64.90 -61.00 -58.28 -56.31 -54.83 -53.68 -52.76 -52.02

Table 3: Optimum winding angle α [◦] versus loading stress σxx = 50 MPa and σxy [MPa], σyy [MPa]
from table

x̄

ȳ

z̄

Mk

F

p R

1

N
t

Fig. 12: Multilayer laminate tube under tension, torsion and interior pressure (it is t � R)

Multilayer laminate tube under tension, torsion and interior pressure

With the above asumptions7 we have again the problem

{ĈCC, σ̂σσ} = argmin
CCC∈ � minσσσ∈ � N

∫

Ω

Cijklσijσkl dΩ,

7See section on page 39.
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where � is set of all admissible compliance tensors and

� N =

{

σν
xx, σ

ν
yy, σ

ν
xy (ν = 1, 2, . . . , N) | F =

N
∑

ν=1

Aνσν
xx,

pR

t
=

N
∑

ν=1

σν
yy, Mk =

N
∑

ν=1

Sνσν
xy

}

where N is number of plies, t is ply thickness (the tube thickness is tN), R is inner radius, Aν is
cross-section of νth ply:

Aν = π
(

(R + νt)2 − (R + (ν − 1)t)2
)

(17)

and Sν is static moment of the same cross-section:

Sν =
2π
3

(

(R + νt)3 − (R + (ν − 1)t)3
)

.

Objective functional

c =
∫

Ω

Cijklσijσkl dΩ

is arranged as follows

c = l

∫ R+tN

R

Cijklσijσkl2π% d% = 2πl

N
∑

ν=1

∫ R+νt

R+(ν−1)t

Cijklσijσkl% d%.

From section Single Ply Laminate Tube under Tension, Torsion and Interior Pressure we have
for % ∈ 〈R + (ν − 1)t, R+ νt〉 on p. 39 relation (12)

Cijklσijσkl =
(

R
1ν
ijklc

4
ν + R

2ν
ijklc

3
νsν + R

3ν
ijklc

2
νs
2
ν + R

4ν
ijklcνs

3
ν + R

5ν
ijkls

4
ν

)

σν
ijσ

ν
kl

and thus

c = l

N
∑

ν=1

Aν
(

R
1ν
ijklc

4
ν + R

2ν
ijklc

3
νsν + R

3ν
ijklc

2
νs
2
ν + R

4ν
ijklcνs

3
ν + R

5ν
ijkls

4
ν

)

σν
ijσ

ν
kl,

where8

Aν = π
(

(R + νt)2 − (R + (ν − 1)t)2
)

and constants R
%ν
ijkl are above.

It is convenient with regards to searching the stacionary point to take the fact σν
xy = σν

yx and
write the objective function as

c =
1
2

N
∑

ν=1

AνσσσνTPPP νσσσν,

where

σσσν =





σν
xx

σν
yy

σν
xy





and
PPP ν = RRR1νc4ν +RRR2νc3νsν +RRR3νc2νs

2
ν +RRR4νcνs

3
ν +RRR5νs4ν, (18)

RRR1ν =





cν
1 cν

12 0
cν
12 cν

2 0
0 0 4gν



 ,

RRR2ν =





0 0 −2cν
1 + 2c

ν
12 + 4g

ν

0 0 2cν
2 − 2cν

12 − 4gν

−2cν
1 + 2c

ν
12 + 4g

ν 2cν
2 − 2cν

12 − 4gν 0



 ,

8See (17) on p. 45.
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RRR3ν =





2cν
12 + 4g

ν cν
1 + cν

2 − 4gν 0
cν
1 + cν

2 − 4gν 2cν
12 + 4g

ν 0
0 0 4cν

1 + 4c
ν
2 − 8cν

12 − 8gν



 ,

RRR4ν =





0 0 2cν
2 − 2cν

12 − 4gν

0 0 −2cν
1 + 2c

ν
12 + 4g

ν

2cν
2 − 2cν

12 − 4gν −2cν
1 + 2c

ν
12 + 4g

ν 0



 ,

RRR5ν =





cν
2 cν

12 0
cν
12 cν

1 0
0 0 4gν



 .

Let us solve the attained form of our problem

{α̂αα, σ̂σσ} = argmin
ααα
min
σσσ∈ � N

c,

� N =

{

σσσ |
N
∑

ν=1

SSSνσσσν = FFF

}

with

SSSν =





Aν 0 0
0 1 0
0 0 Sν



 FFF =





F
pR

t

Mk





by Lagrange theorem. The items of this theorem at discused problem are

a)

LN = λ0
1
2

N
∑

ν=1

AνσσσνTRRRνσσσν + λλλT

(

N
∑

ν=1

SSSνσσσν − FFF

)

,

where

λλλ =





λ1
λ2
λ3





and
∂LN

∂σσσµ
= λ0A

µPPP µσσσµ + SSSµλλλ = 000 (µ = 1, 2, . . . , N), (19)

∂LN

∂αµ

=
λ0

2
AµσσσµT ∂PPP µ

∂αµ

σσσµ = 0 (µ = 1, 2, . . . , N), (20)

where

∂PPP µ

∂αµ
= −4RRR1µc3µsµ+RRR2µ

(

−3c2µs2µ + c4µ
)

+RRR3µ
(

−2cµs3µ + 2c
3
µsµ

)

+RRR4µ
(

−s4µ + 3c
2
µs2µ
)

+4RRR5µs3µcµ.

b) λ0 ≥ 0. It is clear from (20) that λ0 6= 0, and thus let us say λ0 = 1.

c) Complementary condition is fulfil by keeping constrains

N
∑

ν=1

SSSνσσσν = FFF . (21)

For the solution of system of neccesary conditions (19), (20), (21) we use the method of alternating
fulfilment of necessary conditions:9

9Srvn. [Allaire, 2002].
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1. We choose αµ (µ = 1, 2, . . . , N), e.g. αµ = 0 ∀µ.

2. For given set of winding angles αµ (µ = 1, 2, . . . , N) we solve elasticity problem that is for-
mulated by the system of equations (19) and (21) that are linear with respect to σµ

xx, σ
µ
yy, σ

µ
xy

(µ = 1, 2, . . . , N), λλλ.

3. For this stresses σσσµ (µ = 1, 2, . . . , N) let us solve equations (20) at αµ (µ = 1, 2, . . . , N). This
solution we again use at item 2. Etc. to convergence.10

Solutiom of problem from item 2

We solve the system of equations (19), (21), where λ0 = 1 and αµ (µ = 1, 2, . . . , N) are given. We
have

σσσµ = − (AµPPP µ)−1SSSµλλλ (µ = 1, 2, . . . , N),

where along (21)
N
∑

ν=1

SSSν (AνPPP ν)−1SSSνλλλ = −FFF ,

thus

λλλ = −
(

N
∑

ν=1

SSSν (AνPPP ν)−1SSSν

)−1

FFF

and finally

σσσµ = (AµPPP µ)−1SSSµ

(

N
∑

ν=1

SSSν (AνPPP ν)−1SSSν

)−1

(µ = 1, 2, . . . , N).

Solution of problem from item 3

Let us solve the system of independent equations

H1νtg4α +H2νtg3α +H3νtg2α +H4νtgα +H5ν = 0 (ν = 1, 2, . . . , N), (22)

where
H1ν = σσσνT

(

−RRR4ν
)

σσσν,

H2ν = σσσνT
(

4RRR5ν − 2RRR3ν
)

σσσν,

H3ν = σσσνT
(

3RRR4ν − 3RRR2ν
)

σσσν,

H4ν = σσσνT
(

2RRR3ν − 4RRR1ν
)

σσσν,

H5ν = σσσνTRRR2νσσσν.

It is clear that this problem have more that one solution. From all real solutions we choose that
which minimize the objective functinon

c =
1
2

N
∑

ν=1

AνσσσνTPPP νσσσν (23)

Such piont is global minimum point.

Examples

For material from tab. 1 on p. 43 and given loading we have obtained by the above described method
the following optimum winding angles where R = 10mm and t = 1mm.

10[Allaire, 2002] stated: this method converge.
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F [N] p [MPa] Mk [Nmm] α [◦] σxx [MPa] σyy [MPa] σxy [MPa] cpu [s]

628 0 0 0 9,52 0 0 0,07
0 1 0 ±90◦ 0 10 0 0,09
0 0 5 500 ±45◦ 0 0 7,93 0,1
628 1 0 ±90◦ 9,52 10 0 0,08
800 1 0 0◦ 12,13 10 0 0,12
628 0 5 500 −29, 52◦ 9,52 0 7,93 0,42
0 1 5 500 −61, 11◦ 0 10 7,93 0,08
628 1 5 500 −45, 87◦ 9,52 10 7,93 0,1
628 1 -5 500 45, 87◦ 9,52 10 -7,93 0,1

Table 4: Single Ply Laminate Tube under Tension, Torsion and Interior Pressure (N = 1)

F [N] p [MPa] Mk [Nmm] α1 [◦] α2 [◦] σ1xx [MPa] σ1yy σ1xy σ2xx σ2yy σ2xy cpu [s]

628 0 0 0 0 4,54 0 0 4,54 0 0 0,12
0 1 0 ±90◦ ±90◦ 0 5,23 0 0 4,77 0 0,12
0 0 5 500 −44,4◦ 45,6◦ 3,42 3,27 3,63 -3,13 -3,27 3,59 2,88
0 0 -5 500 −44,4◦ 45,6◦ -3,42 -3,27 -3,63 3,13 3,27 -3,59 1,81
628 1 0 ±90◦ 0 0,78 9,21 0 7,98 0,79 0 0,13
628 0 5 500 61, 93◦ −29, 34◦ -0,28 -2,80 1,87 8,95 2,80 5,05 0,99
0 1 5 500 24, 90◦ −62, 65◦ -2,90 0,033 1,74 2,65 9,97 5,17 1,02
628 1 5 500 −59, 07◦ −34, 57◦ 2,92 6,75 3,57 6,02 3,25 3,63 4,27
628 1 -5 500 59, 07◦ 34, 57◦ 2,92 6,75 -3,57 6,02 3,25 -3,63 3,88

Table 5: Two Ply Laminate Tube under Tension, Torsion and Interior Pressure (N = 2)

F [N] p [MPa] Mk [Nmm] α1 [◦] α2 [◦] α3 [◦] cpu [s]
628 0 0 0 0 0 0,28
0 1 0 ±90◦ ±90◦ ±90◦ 0,36
0 0 5 500 −43,79◦ −44,15◦ 45,54◦ 1,72
0 0 −5 500 −43,79◦ −44,15◦ 45,54◦ 1,70
628 1 0 ±90◦ ±90◦ 0 0,29
628 0 5 500 63,2◦ −28,38◦ −29,69◦ 4,23
628 0 −5 500 −63,2◦ 28,38◦ 29,69◦ 4,28
0 1 5 500 −65,87◦ 26,37◦ −61,69◦ 2,55
628 1 5 500 −66,81◦ −48,43◦ −28,11◦ 24,48
628 1 −5 500 66,81◦ 48,43◦ 28,11◦ 24,37
-628 1 −5 500 74,13◦ 72,48◦ −19,05◦ 0,65

Table 6: Three Ply Laminate Tube under Tension, Torsion and Interior Pressure (N = 3)

Design of laminate tube under uncertain loading

Common rules

Let us consider a problem to search laminate tube winding angle that maximize the stiffness at the
most danger loading from the given set of possible loading.
Generally we have the problem to search a compliance tensor ĈCC ∈ � that minimize compliance

measure l = l(σ̂σσ) at the case when σ̂σσ = σσσ(̂ttt) is the stress state developed by the worst configuration
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of loading t̂tt ∈ � from a set of possible loading � :

ĈCC = argmin
CCC∈ � maxttt∈ � l(uuu(σ̂σσ(ttt))), (24)

i.e.,

{ĈCC, t̂tt, σ̂σσ} = argmin
CCC∈ � maxttt∈ � minσσσ∈ �

∫

Ω

Cijklσijσkl dΩ,

where � is the set of acceptable compliance tensors, � is the set of possible load states, and � is the
set of balanced stress states

�
= {σij | σij,i + pj = 0 in Ω ∧ σij`j = ti on ∂tΩ} .

Formalizing of the problem

At the considered case of one-ply tube under tension, torsion and interior pressure the set
�
has one

point:
�
=

{

σxx =
N

2πRt
, σyy =

pR

t
, σxy =

Mk

2πR2t

}

.

Thus the inner minimization is dissolved. Let us choose the set � such that

� = {N, Mk, p | σ2xx + σ2yy + σ2xy = S
}

,

where the S is given constant. From that, with the above manipulation, we have problem

{

α̂, σ̂σσt
}

= argmin
αν

max
σij∈ � σ

c, (25)

c =
1
2
σσσTPPP νσσσ,

where
� σ =

{

σσσ | σσσTσσσ = S
}

and PPP ν is given by (18) at p. 45. Stress σσσ is the same as stress σσσν (ν = 1) from above.
The problem (25) is solved by consecutive resolution of inner and outer problems:

1. The inner maximize problem
σ̂σσ(αν) = arg max

σσσ∈ � σ
c(αν,σσσ). (26)

2. The outer problem, where at item 1 searched stress depending on winding angle σσσ = σσσ(αν) is
substituted into (25), have form

α̂ = argmin
αν

c(αν,σσσ(αν)).

The last two problems we solve by using (above cited) Lagrange theorem.

Resolution of the problem from item 1 (stress)

We solve the problem
σ̂σσ = arg max

σσσ∈ � σ
c(αν,σσσ).

According to Lagrange Theorem we have:
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a) Stacionarity condition of Lagrange function

Lc =
λ0

2
σσσTPPP νσσσ + λ(σσσTσσσ − S)

have form
∂Lc

∂σσσ
= 000,

i.e.,
λ0PPP

νσσσ + 2λσσσ = 000, (27)

where the point σσσ must meet the condition

σσσTσσσ = S. (28)

b) Condition of sign inverse correspondence is reduced to

λ0 ≤ 0,

as follows from interchange of maximizing the function c and minimizing the function −c.

c) Complementarity condition is fulfilled á priori.

If λ0 6= 0, then it is possible to choose it arbitralily (but whit respect to item b).11 Let us consider
λ0 6= 0 and choose λ0 = −1. Thus the coefficient λ is determined by constraint (28).
Stacionarity condition (27) takes the form

PPP νσσσ − `σσσ = 000,

where we write ` = 2λ.
This is system of linear equations at variable σij

VVV σσσ = 000, (29)

where

VVV = PPP ν − `III, σσσ =





σxx

σyy

σxy



 , 000 =





0
0
0



 .

This problem has notrivial solution only if ` is eigenvalue of matrix PPP . We first search eigenvalues
`i a eigenvectors sssi (i = 1, 2, 3) of matrix RRR. Only real solution is interesting for us. Then we search
the solution of neccesary condition at the form

σσσ = tisssi,

where ti ∈ � we determine from condition
σ2xx + σ2xy + σ2yy = S.

From that

ti =

√

S

s21 + s22 + s23
.

The value of the objective function (25) determines the true solution.
For a specified value of winding angle the solution searching of this problem is very easy. On the

other hand common solution and analytical representation of dependance σσσ = σσσ(αν) is extremely
difficult to find. This is the case when it is appropriate to use the response surface method :12

11See [Lavrenťjev and Lusternik, 1952] and [Alexejev et al., 1991].
12See e.g. [Venter et al., 1996] and [Venter and Haftka, 1997].
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i) For values αk = −π
2
+ kπ

N
∈ 〈−π

2
, π
2
〉 (k = 0, 1, 2, . . . , N) we search relevant value of dangerous

stress σσσ from above relations.

ii) By a least square method we then search coefficients of elected expression that express this
stress. This expression must meet two conditions: Firstly, to allow satisfactory accuracy, and
secondly, to be advisable and applicable for solution of the problem from item b.

Let us observe accuacy of following model (applicability for solution have led to his selection)

σσσ = aaap cosp αk + aaap−1 cosp−1 αk sinαk + . . .+ aaa1 cosαk sinp−1 αk + aaa0 sinp αk (aaap ∈ � 3, p ∈ � ).

Formula for searching of coefficients aaai – least square method

For given p our problem contains 3 × p unknowns aaap ∈ � 3 (i = 1, 2, . . . , p). For one solution of
numerical experiment (for elected winding angle αk) we have system of equations

σσσk = AAAkaaa =
(

III3×3 cosp αk, III3×3 cosp−1 αk sinαk, . . . , III3×3 cosαk sinp−1 αk, III3×3 sinp αk
)











aaap

aaap−1
...

aaa0











.

For N solutions of numerical experiment it then is

ΣΣΣ = AAAaaa,

where

ΣΣΣ =











σσσ0

σσσ1

...
σσσN











, AAA =











AAA0

AAA1

...
AAAN











.

At the least square method sence it is

aaa =
(

AAATAAA
)−1

AAATΣΣΣ.

Neccesary condition from second item (winding angle)

Neccesary condition for problem from second item

∂c(α,σσσ(α))
∂α

= 0

is determined by objective function expression

c(α,σσσ(α)) =
p
∑

i=0

aaaT
i cos

i α sinp−i α
(

RRR1ν cos4 α +RRR2ν cos3 α sinα+RRR3ν cos2 α sin2 α+

+RRR4ν cosα sin3 α +RRR5ν sin4 α
)

p
∑

j=0

aaaT
j cos

j α sinp−j α,

or better

c =
p
∑

i,j=0

5
∑

%=1

aaaT
i RRR%νaaaj cosi+5−%+j α sin2p−i−j+%−1 α.

Thus the neccesary condition has the form

∂c

∂α
=

p
∑

i,j=0

5
∑

%=1

aaaTRRR%νaaaj

(

−(i + 5− % + j) cosi+4−%+j α sin2p−i−j+% α +

+(2p − i − j + % − 1) cosi+6−%+j α sin2p−i−j+%−2 α
)

= 0.
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Example

For material characteristics from tab. 1 on p. 43 and S = 10000 MPa2 we have the following:
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Fig. 13: Objectiv function for dangerous stress vs. winding angle α

-60

-40

-20

0

20

40

60

80

100

-100 -80 -60 -40 -20 0 20 40 60 80 100

σ
x
x

[M
P
a
]

α[◦]

σxx

σyy

σxy

Fig. 14: Dangerous stress σσσ vs. winding angle α



Bulletin of Applied Mechanics 1, 29–54 (2005) 53

Comparison of response surface with input data

Let us compare the response surface with input data (for p = 4) by grafic wiew.
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Fig. 15: Dangerous stress σxx and σyy vs. winding angle α
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Fig. 16: Dangerous stress σxy vs. winding angle α

Completion of problem solution – outer optimization

From above it is clear that the minimum value of ojective function for the most dangerous loading
is achieved at ±45◦ of the winding angle.
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