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Problem of stiffness maximization

Let us consider a problem to maximize a stiffness measure of some construction by manipulating
with material mechanics properties (i. e. choosing and changing a stiffness tensor). We search the

stiffness tensor from a set of accessible stiffness tensors that maximize a stiffness measure.

There is a first question at this place. What is the stiffness measure? It is great philosophy issue,

which is beyond the scope of this study, and therefore we select the following one:?

where

Q o

is potencial energy of external loads and
P ()
p)=| py(@)
p-(z)
are mass forces that act in Q C E3, & = (2,9, 2) = (1,29, 23) € ,
t.(x)

tx) = | t,(@)
t.(z)

1See [BENDS@E, 1995] p. 7., [MARES and HoL¥, 2002], [MARES, 2002], [MARES, 2003a], [MARES, 2003b].
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are surface forces acting on boundary part 02, C 0f). Displacements are denoted by

Principle of minimum potential energy states that? among all the admissible displacements
which satisfy the prescibed geometrical boundary conditions, the actual displacements minimize the
total potential energy:

(u) = a(u,u) — ((u), (1)
where

a(u) = a(u,u) = %/S)Eijkl(m) -gij(u(2)) - ep(u(z)) dQ

is elastic potential energy,
0ij(u(x)) = Eijr(x) - e (u())

is generalized Hooke’s Law and

£ (@) = 5 (04,(@) + u34(2)

is Cauchy’s tensor for small displacements.
For the actual displacements « holds

- I
u = arg min (u),

where U is the set of all the admissible displacements which satisfy the prescibed geometrical boun-
dary conditions.
It is also

II(a) = a(u,u) — (a) = Lréiurjl I(u) = Lréiurjl(a(u,u) — l(u)).

From the theory of variational methods?® it is known that in a equilibrium state
. L, .. . - . . . 1 .. L, .
mlnﬂzé(Au,u)—(f,u) N (Ad,u) = (f,a) = H(u):mlnH:—g(f,u):—il(u)

and hence
_1

2

Since for E that both maximize stiffness measure and minimize compliance measure

T(4) = —=I() < 0.

o s L.
E = arg min () = arg max (—2[(u)> =
= arg mgx(a(ﬂ,ﬁ) —[(a)) = arg max min(a(u,u) — [(u))

is valid, we may, if we search stiffness tensor E = {Eijkl ()} that minimize compliance measure [(u),
solve the problem

{E,4} = arg max min(a(u, u) — (), (2)

where E is set of acceptable stiffness tensors and U is set of all the admissible displacements which
satisfy the prescibed geometrical boundary conditions.

2[WasHIZU, 1975] p. 27.
3See for e.g. [Bamymnsy, 1987] and [BENDSQE, 1995].
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At topology design the set IE contains stiffness tensor of given isotropy material £;j; and null
material, i.e., stiffness tensor with zero components. It is

Eiji = 5(x)Eszkl’

where
1 at the point £ with material,

o(z) = { 0 at the point & without material.

Volume (weight) constraint is given by

/Qé(z) dQ < V.

In this case the indicate function d(z) is the only one design variable.
In the case of linear elastic material it is posible to write the last problem by using the comple-
mentary energy as

2 (1

{C,6} = arg minmin (2 /Q Cijh0ijOh dQ) , (3)

where the set of all statically admissible stresses
SZ{O};J' ’Uij7i+pj:0na9 N Uij'gj:ti na 3Qt},

at this ¢;(z) is directional cosinus of outward normal to boundary 02 of domain Q at z € 9€2; and
C = {Cjji} is compliance tensor from where the set of all admissible compliance tensors C. It holds
that

Eij = Cijklakl~

Constitutive law of thin laminate ply

Generalized Hooke’s Law for laminate ply

W — —Z2 T T A
= —Z1

v=-3 it 22 >

v=—2 = 22 25 z

v=-1 :

V= //’//
‘/1/ =2
Y v=3 b
a

Fig. 2: Laminate plate composed of 2N = 2 - 3 orthotropic symetrically laid plies

Constitutive law of thin laminate ply in the main material coordinate system x*-y" of vth ortho-

tropic ply is given by*

v v v 12

011 11 12 0 €11
v P v v 17

099 = 12 Q% 0 €99 (4)
v v 12

4[GURDAL et al., 1999] pp. 53, 63.
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Ty

Yv

Fig. 3: Global coordinate system z—y and main material coordinate system z*~y"

where , ,
QV o El I/V o I/V EZ (5)
N1 = 7 v 21 = Y27
1- ’/112’/517 E1V’
v v
QV o E2 Ql/ o V12E2 (6)
22 — v v 12 — v .v )
1 —vihvs) 1 —vihvs

and where (v = 1,2,..., N) is the sign of ply sequence from the center of plate, and EY, EY a GY,
are moduli of elasticity in the major direction, in the minor direction of the vth ply, and modulus of
elasticity in shear of the vth ply, respectively. For major Poisson ratio 15 in the case of loading in
only major direction z” it holds

Vig = ——.
€1

Likewise for minor Poisson ratio in the case of loading in only minor direction "

€1
Vor = ——-
€9
It also holds
hiz _ b1
Ey By

Constitutive law in two-dimensinal tensor notation

We consider the plane stress state for the formulation of constitutive law. Let us introduce stress
tensor and strain tensor of vth ply at main material coordinate system of vth orthotropic ply z'~y"

by®
v v v v
{0{/‘} — ( 011 012 ) — ( Oza ny )
i v v v v )
021 022 ny Uyy
v v v v
{ zz} _ €11 €12 _ Crz Ty
gij - eV eV - eV v )
21 22 yx Yy

where alternatively, as in the future, we use equivalent indexing 11 or xz. Relation of stress—strain
at main material coordinate system of vth orthotropic ply have form

oM M

v o__ v v
045 = Lki€ri

5See [MARES, 2002], [MARES, 2003aj, [MARES, 2003b], [MARES, 2004].
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where

Ry 0 0 @
v 0 Gi, Gi, 0
{Eijkl}ijfkl = 0 11/2 11/2 0 ) (7)

Qi 0 0 Qp

and right-low index ij [kl says that rows of the matrix are related to (ij = 11,12, 21, 22) and columns
to (kl = 11,12,21,22). This stress—strain relation is evident from following expanding of relations

(4):
011 = Q1ie11 + QTz¢3,
05 = Q1211 + Q3265
o1y = 05 = Gloely + Glhes = 2Gel, = 2Ghey, (612 = €21).

By tranforming these expression of stress and strain tensors from main material coordinate system
of vth orthotropic ply z*~y" into global coordinate system of laminate plate z—y we state the stress
tensor of vth ply in the global coordinate system z—y
Vz€e(z,1,2,)ifv>0,

oii(x,y,z) = 05007 .
i@y, 2) kTR YV z € (z,2,41) if v <O,
as function of strain tensor of vth ply in the global coordinate system z—y

Vze(z,1,2)ifv>0,

5ij(x7y7z) = giykgjy'lga V2 € <Z z +1> ifv<O.

Transformation matrix has (see Figure 3) the form

{e:k}z-m={ak<ay>}im={cos<xi,xz>m:(C"S“’x”) cosle, 1) ) =( cosaw sy ) )

cos(y, ") cos(y,y") —sina, cosaqy,

Since
iklir = Oij
and
ki Zj = 5@']"
where Kronecker
S — 1 for [ =k,
M= 0 for [+#k,

we have, using production of both sides of equality (8) by expression £} (%, inverse transformation
relation
e (w,y, 2) = (0 ey (2., 2),

where tensor £% belongs to vth ply with v = v(z) as follows: z € (z,-1,2,) if 2 > 0, and if z < 0
then z € (z,,2,41).
Using the equations

0ij (2., 2) = ) 6000 = (6 B e,
the searched relation between stress tensor of vth ply in the global coordinate system and strain
tensor of vth ply in the global coordinate system takes the form of constitutive law of thin laminate
ply:

032,y 2) = GG B 650 e,y 2).

mnop
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Fig. 4. Carthesian coordinate system Z7Zz of the tube

~

8l

S

Fig. 5: Cylindrical coordinate system 7tz of the tube

Optimization of laminate tube winding angle

Used coordinate systems

Transformation of two-dimensional stress tensor and strain tensor from the main mate-
rial coordinate system into global coordinate system of the unrolled tube

At this subsection we put transformation of two-dimensional stress tensor o;; and strain tensor &,
in the main material coordinate system z*~y" into global coordinate system of the unrolled tube z—y
(at which we denote them as o;;, €).
From above it is
0ij = Linl510h,

(0 _< cos a, sinau)

—sina, cosq,

where

Once more from above

)
Emn = Eimgjngw‘

Thin tube (tube made from one orthotropic ply)
Premises

e Tube is made from one orthotropic ply (v = 1).
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Fig. 6: Global coordinate system zyz of the unrolled tube

2R

>

ay

Ty

Fig. 7. Main material coordinate system x,y,z2, of vth orthotropic ply

e Hooke’s law of that ply in the main material coordinate system z*-y” takes the form o7; =
B, et
jkIC kI

1

e We do not consider buckling.

e Ply thickness is negligible with respect to radius of tube: cylindrical coordinate system rtz of
the tube coincide whit global coordinate system of the unrolled tube (zyz).

Torsion

We consider that buckling does not happen and that moment of torsion M, is transmited by shear
stress oz. Let this stress be (for the ply is thin-walled) constant throughout the cross-section, i.e.

Mk = 27TRTO'2,5R.
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e

AL

Fig. 8: One-ply laminate tube under torsion

¢ Y
%r
W =i‘

Fig. 9: Stress o in the one-ply laminate tube under torsion

At the global coordinate system of the unrolled tube (system zyz) the stress oz is equivalent to
component o, of stress tensor. The others component are null. Hence

0 o,
{oij}ir = ( ouy 0 ) :

Tension

Y \
A

Fig. 10: One-ply laminate tube under tension
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Let us consider
N = 27TRTO'5§,

for oz; constant throughout the cross-section.
At the global coordinate system of the unrolled tube (system zyz) the stress os; is equivalent
to component o,, of stress tensor. At the global coordinate system xyz the stress tensor takes (for

simple tension) form
Ozz 0
{oi}ip = < 0 0 ) :

Bending

10

.
2 /

RN
Y
A

Fig. 11: One-ply laminate tube under bending

With the well-known assumption about linear distribution of stress under bending we have

= 0
Yy o Oz
M,, = 0. L. gdA =27,
/Agz R 4 R

and thus M
(_) — oT R
lop 7
and
_ Mof _
o5 = 7

Also at this case it is 0,, = 0; and at the global coordinate system xyz

Ogpz O
{oiti; = < 0 0 ) :

However we do not consider this case here since from the optimization point of view it is not

diferent from the tension case.

Winding angle that maximize tube stiffness

Let us consider the above problem
A 1
{C,6} = argmin min 5/ Cijkioijor A€, (10)
Q

CeC oS

where
S = {Uz'j | Oiji +p] =0 na Q, Uijéj =1t; na 8tQ}

and where C is a set of acceptable compliance tensors.
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Compliance tensor of laminate ply v

For the ply at the main material coordinate system x*-y” the following form holds

v o __ v 174
€y = Cijklakl'

From above we have

O.V O_l/
v v 12 21 v v
€91 = €12 = = (‘712 = ‘721)7
1 1
12 12 12
—ely=—— o+ —— 0
21 2= aa, ‘2T ag, o
and
v o _ W v v v
o1 = QieT; + Q1o
v o v v v v
099 = Q12611 + Q92E5,
from that
v v v v — v 17 14 v v
Q52011 — Q1203 = (RQ11Q% — Q1Q%) €11,
14 14 14 v 14 4 14 14 14
Q11099 — Q1907 = (Q11Q22 - Q12Q12> €99
yielding
v 12 12 12
€11 Chin 0 0 Cliae 011
v v v v
€12 | _ 0 Clyp Cloy 0 012
v 12 12 1% )
€21 0 Cs1a Cdio 0 091
v v v 17
€92 Cho11 0 0 Chaoo 099
where o
22 v
CV prnd = C
1111 ey v 1
Q11Q% — Q07
Qs
CU — CU — — CU
1122 2211 125
Q12Q7y — Q1105
Q7
CV e = CV
2222 e v ) 2>
1Q5 — Q1,07
1
011212 = Cf221 = 05112 = 5121 = —4G” =g".
12
Note: If

1102 — Q@1 <0
then it is unusual material: Negative Poisson’s ratio.®
For r respective z from ply v we have (at the global coordinate system xyz)

ij(x,y,2) = Ciji(2)om(x, v, 2),

eij(t,y,2) = LD 2y, 2) = PGP OFE) v (2, y, 2),

klmn~ mn

> (.f, Y, 2’) _ e;/k(z)el;l(z)cu(z) gu(z)gu(z)o_op (33, Y, 2)7

klmn™~om “pn
or, at the form ¢;;(x,y, 2) = Cijr(2)on(x, vy, 2), as folowing

eij(w,y,2) = LD CrE) 090 gy (2, y, 2).

mnop

From that we obtain
Cijua(z) = (520D v 12,

mnop

6See for example [FRIIS et al., 1988].
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Single Ply Laminate Tube under Tension, Torsion and Interior Pressure

At this place we investigate problem

A~ 1
CA}: inmin = | Cyipomom A9, 11
{e.6} = areminmin [ Couoon (11)

where C is the set of acceptable compliance tensors.

g N pR M,
=NO0zz =35 5, Oww= 7 Oy = 5 10, ( *
orRt’ Y t Y orR2t

For the compliance tensor Cjjy; at global coordinate system (for r € (R+ (v —1)t, R+ vt) i.e. for
vth ply) it holds that
Cijklaij(fkl =l 0 00O 00kl

im*jn*ko~lp~mnop

with
v
gim = OimCv + €imSy,
where
Cc, =C0Sqy, S, =-sinaq,.
Consequently

Ciji0ij0k1 = (Co 00 0hs0py 4 CoSu (€0m02Oro0t + 0o €4 0101, + Oin, O €10ty + 01 0%, Sl ) +

vYim”jin imvjn m-jn min m-Jn
2.2 (v v SV SV v SV UV SV v SV SV UV v v UV SV v Vv SV UV v SV UV U
+CV8V (Eimejn(skodlp + €im jnekoélp + €im jn(skoqp + 6im€jn€k05lp + 6im6jn5k06lp + 5zm jnekoelp) +
3(sv v v U v SV UV UV v v SV UV v Vv U SV 4 v v v v\ w
+CVSV (5im6jn€koelp + eimajnekoelp + eimejnékoelp + 6iméjnekoélp) + Sveimejnekoelp) Cmnopaijgkl’
Let us write
v 4 2v 3 3v 2.2 4v 1 .3 5v 4
Cijklaijakl =R ch +9R VC;/SV + R VCVSV + R chsy + R VSW (12)

where coefficients R?” (p = 1,2,...,5) are assembled as follows:

v _ rw »

2v v v v v
RY = (fimcmjkl + €nCingt + €roCijor Elpcijkp) 0ijOk

and, since C},,., =CY —~=Cv  and o, = 0j;, it is

mnop opmn pomn
2v v
% = 4€imcmjk10'ij0'kl.

Coefficient of term ¢2s?:

m?ﬂ/ - C»Zmopo-ijo-kl ((57,]5mn - 5zn6]m) 5k051p + (5ik5mo - 5i05mk) 5jn6lp + (5il5mp - 5ip6ml) 5jn5ko+

+ (5jk6no - 5jo6nk) 5im5lp + (5jn5np - 5jp5nl) 5im5k0 + (6kl50p - 5kp60l) 6zm6]n) )

v __ v v v v v v v
RY = Crmmior — Cijaoiion + O ki — Cia0iion + O jemii ki — CliniOiont + ChpOinOri—

v v v v
_C’ik;jlo-ijo-kl + Ct 00k — C»lij'ijO'kl + C!

v
ipkp i ijppPiiOkk — C"jllco-ijo-kl7

i
3v v v v v
R = 2Cmmklaii0kl - ZCiijOi]‘O'kl +4 mjmlakjakl - 4ijilaijakl>

and finally

For R* it holds

9%4V =Cy 00kl ((5kl50p - 6kp6ol) 5im€jn + (6kl(sop - 5k:p50l) 6z’m(sjn"i_

mnop
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+ (6j15np - 5jp6nl) Eim51~w + (5jk5no - 5j06nk) Eim(slp) ’
4v v v v v v

RY = €nClpp0ijikk — €inCirn0ijori + €mCipp0iiOkk — €mCin0ijor + €mCprpCitOri—
12 12 12
_€imleijijUkl + €mCrootTik Okl — Gimkaszz‘jUkl,

m4u = €im (QC]mppO-ljo-kk + 20"

v
ok Oit0kt — 205, 100301 — 20150650
v v v
At last
5v v
9% == Eimejnekoelpcmnopaijakl7

RY = (6ij5mn — 5m5mj) (Oki00p —

6k)p Ol) mnapo-lj Ukl bl

5v v v
9%51/ ="

14
mmppOiiOkk + Cpioijon — 207, 040k,

R = (Cmmppéwékl + Clit — 2C7,0k

ijpp ) TijOkl-

At the case of one-ply tube the set $ has only one component (the solution & is known). Accor-
dingly the coefficients 98¢ are known numbers and the problem (11) has the form

\%
! i Bl (fﬁll’cﬁ + 9“12”033,, + 9‘{3”012,33 + 9“14”61,33 + 9‘{5l’sﬁ) ,
ay € -z

where V is the tube volume.

The necessary condition

o(")
Oay,

=0
has the form

R, + (2RY —aRY) s, + (BRY — 3RY) st + (4R — 2RY) ¢ps) —RYs, =0.  (13)

If s, =0, it is ¢, = +1 and R* = 0. It is not truth. Hence it isnot s, = 0. If ¢, = 0, it is 5, = +1
and ¥ = 0. It also is not truth. Therefore it is not ¢, = 0. Since ¢, s, # 0 we may divide equation
(13) by ¢}, from that

6"tga, + 6%7tgla, + 6¥tg’a, + 6*tga, + &% =0, (14)
where

1v 4v 4v
6 = —R* = _:Rijk:lo-’ijo-k'l?
hereat

R’L]k‘l 2€im (ijpp(;kl + C pk}5]l CV

Jmkl — Zzlkj) )
ci 0 0 cf
0 g g° O
{ ]kl}mj [kl — 0 gu gzx 0 ’
s 0 0
g 0 0 g
v _ 0 gV CI{Q 0
{lekj}m] [kl - 0 011’2 gV 0 ’
¢ 0 0

1§
VAN
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cf + ¢y
” 0
{ijpp}mj[ - 0 )

17 17
Ci9 T C5

v qg+g” 0
1Cn ppk}mfk ( 0 g”+cg)’

and then
cly + 9" 0 0 =g
v v _ 0 Clll - gy _011/2 - gu 0
{ jmpp(sk?l + O ppk5 il — ijkl - lekj}mj [kl - 0 _011/2 - gl/ Cg o gu 0 )
cs —g¥ 0 0 cly +g¥
0 —2¢]y — 29" 2cy — 2g” 0
{IR _ 2c5 — 2g"” 0 0 2cy + 29"
ikt S i5[ki —2cY, — 29" 0 0 —2cy + 2g"
0 —2c] + 29" 2c{y+ 29" 0
Since )
[oie) o o 0.0
g _ zx® zy Ty xy zy“yy
{0301} 510 T S S e
TyyOuz  OyyTay OyyTay Tyy

finally it is
G = 20,04, (49" + 2¢%y — 2¢5) + 20,04, (—4g” — 2¢y + 2¢%) .

Furthermore we have

G = 4R — 2RV, (15)
where
%5y = R?jyklo-ijo-klv
:szkl (Cmmppalj(skl + zykl 2Cszp5kl)
and
C:nmpp = clll + 2611/2 + 012/7
o + ¢ty
y 0
{Cijpp}z’j( - 0 ’
Cly + ¢
from which
0 g’ g” 0
5v _
{:Rijkl ikl 0 q° g¥ 0
citclp—c3 0 0 ct
and
R = o, + 49702, + {05, + 20130020y,

For coefficient 2R3 it is
v _ M3v
RY = Rij10ij0n;

where

R’ijl - 2051 kl(SU + 401/ 5’Lk) QC]kl 40}?]1[,

mjml
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from which
2, +4g” 0 0 2c5 — 49"
{ 0 dey — 2g9¥ —4cy — 29”7 0
”kl 0 —4cyy, — 297 Ac] — 29 0
2c) — 4g” 0 0 2c7y + 49"
and hence

RY =02, (2c], +4g") + 02, (4c5 — 8g” — 8y + AdY) + 05, (26, + 49") + 0200y, (2¢5 — 89" + 2¢1) .
Finally from (15) and from above
Say = 02, (4¢5 — 4cf, — 8¢") + 02, (329" — 8¢y + 16¢7, — 8¢]) +

+oo, (4¢) — 4cfy — 89") + 0420y, (169" — 4ch + 8¢f, — 4cY) .
At the case of &3 we have
G = 3RY — 3R,
From above
RY = 40,04, (c5 — g — 29") + 4000y (—4 + ¢4y + 297)
R = R?gl'/klaija kls

R’l]kl — 4€Z'mCV

mjkl>

and

0 49  4g" 0

{ 4cy, 0 0 Ach
ih | -4 0 0 —4d,

0 —4g¥ —4g” 0

Again
RY = 04004 (89" + 4cfy — 4cY) + 0y 04, (=89” — 4cfy + 4cy)

and hence

G = 120,304, (¢ — 2¢y — 4g" + ) + 120,04, (=5 + 2¢}y + 49" — ).
For fourth coefficient of condition (14) it is
G = (2”¥ — 4RV

where

R =07, (2cY, +49") + 03, (4cy — 89" — 8ciy +4c) + 03 (2015 +4g") + 04z0y, (2¢] — 8¢” + 2¢5)
and

RV = ijklaklaij,
it, according to above, is
RY = ol +4g"0> oy T cgazy + 2¢150550yy.

Thus
G = 4o}, (cfy + 29" — 011/>+805y (¢ — 49" — 21, + CT)+4U§y (c1y + 29" — ¢5)+400a0y, (5 — 49" — 2, + ).

Finally
6 5v —_ SRQV 7

and from above

&% = 0,404y (89" + 4%y — 4CY) + 04y 00y (—89" — Ac¥y + 4c) .
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Recapitulation of necessary condition
The necessary condition has form

G"tgta, + 6%tg’ay, + &% tg’a, + 6*tga, + &% =0, (16)

where
Sl = 404004y (29" + 1y — 5) + 40y 04y (20" — ¢}y + 1),

Say = 02, (4c5 — 4cf, — 8¢") + 07, (329" — 8¢y + 16¢, — 8¢]) +
+oo, (4c) — 4cfy — 89") + 0400y, (169" — 4ch + 8¢f, — 4cY) .
G = 120,,04, (¢ — 2¢y — 4g" + ) + 120,04, (—cb + 2]y + 49" — ).
6" =403, (cfy + 29" — ) +80%, (5 — 49" — 2¢{, + ) +doy, (1, + 29" — ¢5)+40,,0y, (¢ — 49" — 2¢], + ).

G = 04y 0uy (89" + 4cky — ACY) + 0y 04y (—8g" — AcYy + 4cY) .

Solution of the problem

v = 181 GPa

v = 10,3 GPa
GY, = 717 GPa
VY, = 0,28

Table 1: Graphite-epoxy laminate ply material characteristics

For the cited material (Kevlar-Epoxy, vide Table 1) see following tables. There is dependance of
searched winding angle with respect to given loading state 0,;, 0y, and o,.

Oyylozy 0 10 MPa 20 30 MPa 40 50 MPa 60 70 MPa 80 90 MPa 100

0 MPa 0 -5.65 -10.90 -15.48 -19.33 -22.50 -25.01 -27.23 -29.00  -30.47 -31.72
10 MPa 0 -6.26 -11.98  -16.85 -20.82  -24.01 -26.57 -28.63 -30.32  -31.72 -32.89
20 MPa 0 -7.02 -13.28  -18.43 -22.50 -25.67 -28.15  -30.13 -31.72  -33.02 -34.10
30 MPa 0 -7.97 -14.87  -20.30 -24.41  -27.50 -29.87  -31.72 -33.19  -34.37 -35.35
40 MPa 0 -9.22 -16.85  -22.50 -26.57  -29.52 -31.72  -33.40 -34.72  -35.78 -36.65
50 MPa 0 -10.90 -19.33 -25.10 -29.00 -31.72 -33.70  -35.17 -36.32  -37.24 -37.98
60 MPa 0 -13.28 -22.50 -28.15 -31.72  -34.10 -35.78 -37.03 -37.98 -38.74 -39.35
70 MPa 0 -16.85 -26.57  -31.72 -34.72  -36.65 -37.98  -38.95 -39.69  -40.27 -40.73
80 MPa 0 -22.50 -31.72  -35.78 -37.98 -39.35 -40.27  -40.93 -41.44  -41.83 -42.14
90 MPa 0 -31.72 -37.98  -40.27 -41.44 -42.14 -42.62 -42.96 -43.21  -43.41 -43.57
100 MPa | -45 -45 -45 -45 -45 -45 -45 -45 -45 -45 -45

Table 2: Optimum winding angle « [°] versus loading stress o,, = 100 MPa and o,, [MPa], o,, [MPa]
from table
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oyylozy 0 10 MPa. 20 MPa 30 MPa 40 MPa 50 MPa 60 MPa 70 MPa 80 MPa 90 MPa 100

0 0 -10.90 -19.33 -25.10 -29.00 -31.72 -33.69 -35.17 -36.32 -37.24 -37.98
10 MPa 0 -13.28 -22.50 -28.15 -31.72 -34.10 -35.78 -37.03 -37.98 -38.74 -39.35
20 MPa 0 -16.85 -26.57 -31.72 -34.72 -36.65 -37.98 -38.95 -39.69 -40.27 -40.73
30 MPa 0 -22.50 -31.72 -35.78 -37.98 -39.35 -40.27 -40.93 -41.44 -41.83 -42.14
40 MPa 0 -31.72 -37.98 -40.27 -41.44 -42.14 -42.62 -42.96 -43.21 -43.41 -43.57
50 MPa -45  -45 -45 -45 -45 -45 -45 -45 -45 -45 -45
60 MPa -90  -58.28 -52.02 -49.73 -48.56 -47.86 -47.38 -47.04 -46.79 -46.59 -46.43
70 MPa -90  -67.50 -58.28 -54.22 -52.02 -50.65 -49.73 -49.07 -48.56 -48.17 -47.855
80 MPa -90 -73.15 -63.43 -58.28 -55.28 -53.35 -52.02 -51.05 -50.31 -49.73 -49.27
90 MPa -90  -76.72 -67.50 -61.85 -58.28 -55.90 -54.22 -52.97 -52.02 -51.26 -50.65
100 MPa | -90 -79.10 -70.67 -64.90 -61.00 -58.28 -56.31 -54.83 -53.68 -52.76 -52.02

Table 3: Optimum winding angle « [°] versus loading stress o,, = 50 MPa and o,, [MPa|, o,, [MPa]
from table

Fig. 12: Multilayer laminate tube under tension, torsion and interior pressure (it is t < R)

Multilayer laminate tube under tension, torsion and interior pressure

With the above asumptions” we have again the problem

CeCoecsN

{C,6} = argmin min / Cijki0i01 dS2,
Q

"See section on page 39.
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where C is set of all admissible compliance tensors and

N N N
SN:{JM,UW,JW (v=12,....,N) | F = E Aol = E Opys My = E Sawy}
v=1 v=1 v=1

where N is number of plies, ¢ is ply thickness (the tube thickness is ¢V), R is inner radius, A" is
cross-section of vth ply:

A" =m (R+vt)> = (R+ (v — 1)1)?) (17)
and S” is static moment of the same cross-section:
2
SV = ;T (R+vt)* — (R+ (v —1)t)%).

Objective functional
c= /Qc'ijkzazjakz dQ
is arranged as follows
R+tN R+vt
c= l/ Cijroijog2modo = 27l Z/ Cijroijorodo.

R R(v—1)t
From section Single Ply Laminate Tube under Tension, Torsion and Interior Pressure we have
for o € (R+ (v — 1)t, R+ vt) on p. 39 relation (12)
Cijki0ijOr = (IRUMC +fR”le S, + szklcysy +fRUle,,S + CR”kls ) a,’;l
and thus

§ v
c=1 A :Rzyklc + :Rzyklc Sy + :leklcysl/ + :szklclfs + :Rz]kls ) Uzyo-kb

where®

A =7 ((R+ 1)’ = (R+ (v = 1)1))

and constants R, are above.
It is convenient with regards to searching the stacionary point to take the fact ¢”, = o}, and

write the objective function as
N

1
c= = AI/O,I/TPI/O.I/’
22
where
O
0" = | oy
Ty
and
P’ = RlVC;4/ + RQVCI?;SV R3VCVSV + R4VCVS§ + RSVS;Jj’ (]_8)
g ¢ 0
R"=|¢d, & 0 ’
0 0 4g¢"
0 0 —2¢] + 2%, + 4g”
R2V _ 0 0 265 — 20?2 — 491/ 5
—2¢ +2c%, +4g” 2¢y — 2, — 4g” 0

8See (17) on p. 45.
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201y +4g9"  f +cy — 49”7 0
R¥ = | & +c4—4g” 2, +4g” 0 ,
0 0 4cl + 4cy — 8cly — 8g”
0 0 2¢5 — 2c]y — 49"
RY = 0 0 —2¢) +2¢Yy +4g” |,
2cy — 2cYy — 49" —2c] + 2cY, + 49" 0
¢ ¢ 0
R =| ¢, & 0

0 0 4g”

Let us solve the attained form of our problem

{a,6} = argmin min c,

a geSN
N
SN:{astv ”:F}
v=1
with
AV 0 0 F
SY = 0 1 0 F = %
0o 0 s M,

by Lagrange theorem. The items of this theorem at discused problem are

a)

N N
1 v vl pUv v T VU
LN:AO§;AG R'o +/\ (ZSO’ —F>,

v=1
where
A
A= Ao
A3
and oL
N _ 7% > YT By — _
aaquoAPa +8"A=0 (u=1,2,...,N), (19)
oLy Ao - OPH
= —Atgtt — ot =0 =12 ....N 20
aau 5 o aaua (,u ) 4y ) )7 ( )
where
opPH

i —4R" S5, + R (=3cs%, + ¢, )R (—2¢,s) + 2¢)s,) +R™ (=5, + 3chs7) +4RM 50 c,..

b) Ao > 0. It is clear from (20) that Ay # 0, and thus let us say \g = 1.
c) Complementary condition is fulfil by keeping constrains

N

> S‘%" =F. (21)

v=1

For the solution of system of neccesary conditions (19), (20), (21) we use the method of alternating
fulfilment of necessary conditions:”

9Srvn. [ALLAIRE, 2002].
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1. We choose o, (0 =1,2,...,N), e.g. o, =0 Vpu.

2. For given set of winding angles o, (1 = 1,2,..., N) we solve elasticity problem that is for-
mulated by the system of equations (19) and (21) that are linear with respect to of,, ot , ok,
(n=1,2,...,N), A\

3. For this stresses o/ (11 =1,2,...,N) let us solve equations (20) at o, (x =1,2,...,N). This
solution we again use at item 2. Etc. to convergence.!°
Solutiom of problem from item 2

We solve the system of equations (19), (21), where A\ = 1 and «, (¢ = 1,2,...,N) are given. We
have
ot = — (A"P)TT SN (n=1,2,...,N),

where along (21)
N
> 8Y(A"P")T'S"A = —F,

v=1
thus
N -1
A= — (Z sv (A”P”)13”> F
v=1
and finally
N —1
ot = (A/LP/L)*l SH <Z Sv (AVPy)fl SV> (N _ 1’ 27 o N)
v=1

Solution of problem from item 3

Let us solve the system of independent equations

H"tg*a + H*tg’a + H*tg’a + H*tga+ H” =0 (v=1,2,...,N), (22)

where
Hll/ — o.l/T (_R41/) 0.1/’

H2V — O_VT (4R5l/ _ 2R3u) 0_1/’

H3u — o_l/T (3R4l/ _ 3R2y) 0_1/’

H4I/ — a.I/T (2R31/ . 4R11/) o’

H5V — O_ZITRQVO_V‘
It is clear that this problem have more that one solution. From all real solutions we choose that

which minimize the objective functinon

N
1 v VT pv v
c:§;1Aa P'o (23)
Such piont is global minimum point.

Examples

For material from tab. 1 on p. 43 and given loading we have obtained by the above described method
the following optimum winding angles where R = 10 mm and ¢ = 1 mm.

10TALLAIRE, 2002] stated: this method converge.



48

ToMAS MARES: LAMINATE TUBE STIFFNESS MAXIMIZATION BY WINDING ANGLE CONTROL

| FIN] | p[MPa] | My [Nmm] | o [°] |04 [MPa] | 0y [MPa] | 0,y [MPa] | cpu [s] |

628 0 0 0 9,52 0 0 0,07

0 1 0 +90° 0 10 0 0,09

0 0 5 500 +45° 0 0 7,93 0,1

628 1 0 +90° 9,52 10 0 0,08

800 1 0 0° 12,13 10 0 0,12

628 0 5 500 —29, 52° 9,52 0 7,93 0,42

0 1 5 500 —61,11° 0 10 7,93 0,08

628 1 5 500 —45,87° 9,52 10 7,93 0,1

628 1 -5 500 45, 87° 9,52 10 -7,93 0,1

Table 4: Single Ply Laminate Tube under Tension, Torsion and Interior Pressure (N = 1)
| FIN] [ pMPa] | My [Nmm] || a1 [?] | oo [?] [0k, MPa] | o,, | o1, | 02, | of, | o2, | cpuls]]

628 0 0 0 0 4,54 0 0 4,54 0 0 0,12
0 1 0 +90° +90° 0 5,23 0 0 4,77 0 0,12
0 0 5 500 —44 4° 45,6° 3,42 3,27 | 3,63 | -3,13 | -3,27 | 3,59 2,88
0 0 5 500 —44,4° | 456° 3,42 327 | 3,63 | 3,13 | 3,27 | 3,59 || 1,81
628 1 0 190° 0 0,78 921 | 0 | 798079 0 0,13
628 0 5 500 61,93° | —29,34° 20,28 280 | 1,87 | 8,95 | 2,80 | 5,05 || 0,99
0 1 5 500 24,90° | —62,65° 2,00 0,033 | 1,74 | 2,65 | 997 | 5,17 || 1,02
628 1 5 500 —59,07° | —34,57° 2,02 6,75 | 3,57 | 6,02 | 3,25 | 3,63 || 4,27
628 1 -5 500 59,07° | 34,57° 2,02 6,75 | -3,57 | 6,02 | 325 | -3,63 || 3,88

Table 6: Three Ply Laminate Tube under Tension, Torsion and Interior Pressure (N

Table 5: Two Ply Laminate Tube under Tension, Torsion and Interior Pressure (N

| FIN] [ p[MPa] | My Nmm] | a1 [] | aw[?] | a3[] [ cpuls]]
628 0 0 0 0 0 0,28
0 1 0 £90° £90° £90° 0,36
0 0 5500 || —43,79° | —44,15° | 4554° | 1,72
0 0 -5 500 —43,79° | —44,15° | 45,54° 1,70
628 1 0 £90° £90° 0 0,29
628 0 5 500 63,2° | —28,38° | —29,69° || 4,23
628 0 -5 500 —63,2° | 28,38° 29,69° 4,28
0 1 5 500 —65,87° | 26,37° | —61,69° | 2,55
623 1 5500 | —66,81° | —48,43° | —28,11° | 24,48
628 1 -5 500 66,81° 48,43° 28,11° 24,37
-628 1 -5 500 74,13° 72,48° | —=19,05° | 0,65

Design of laminate tube under uncertain loading

Common rules

3)

Let us consider a problem to search laminate tube winding angle that maximize the stiffness at the
most danger loading from the given set of possible loading.

Generally we have the problem to search a compliance tensor C € C that minimize compliance
measure [ = [(6) at the case when 6 = o (t) is the stress state developed by the worst configuration
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of loading ¢ € T from a set of possible loading T

~

C = argminmax [(u(d(2))), (24)

ie.,

C.t,6)} = arg min max min Ciiri0i05 AQ2
{C.t.6} gCeC teT oe€s Jo 0 7 ’

where C is the set of acceptable compliance tensors, T is the set of possible load states, and $ is the
set of balanced stress states

S = {Oij | Oij.i +pj =0inQ A Oijgj = ti on atQ} .

Formalizing of the problem
At the considered case of one-ply tube under tension, torsion and interior pressure the set $ has one
point:
. N PR My,
= ag. = -, a. = —, ag. = — .
woo2rRt” Y 0 Y 2R

Thus the inner minimization is dissolved. Let us choose the set T such that
2 2 2
T = {N,Mk,p | 0 + 0,y + 05y = S},
where the S is given constant. From that, with the above manipulation, we have problem

A At .
{a,6'} = arg min agl?%a c (25)

1 T
C = — PV
20 o,

where
T ={o|o"'0 =S}

and P¥ is given by (18) at p. 45. Stress o is the same as stress 6 (v = 1) from above.
The problem (25) is solved by consecutive resolution of inner and outer problems:

1. The inner maximize problem

o(a,) = arg max c(ay,0). (26)

2. The outer problem, where at item 1 searched stress depending on winding angle 6 = o(a,,) is
substituted into (25), have form

& = argmin (o, 0(q,)).
Oy

The last two problems we solve by using (above cited) Lagrange theorem.

Resolution of the problem from item 1 (stress)

We solve the problem

o= arg max c(w,0).

According to Lagrange Theorem we have:
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a) Stacionarity condition of Lagrange function
A
L= 700‘TPV0' + Moo - S)

have form

oL,
=0
o ’
ie.,
MP’o + 2\ =0, (27)
where the point ¢ must meet the condition
oclo=25. (28)

b) Condition of sign inverse correspondence is reduced to
)\0 S 07
as follows from interchange of maximizing the function ¢ and minimizing the function —c.

c) Complementarity condition is fulfilled d priori.

If \g # 0, then it is possible to choose it arbitralily (but whit respect to item b).!! Let us consider
Ao # 0 and choose A\g = —1. Thus the coefficient \ is determined by constraint (28).
Stacionarity condition (27) takes the form

P'o —lo =0,

where we write ¢ = 2.
This is system of linear equations at variable o;

Vo =0, (29)
where
Oa 0
V=P -/, o= ow |, 0=10
Oy 0

This problem has notrivial solution only if ¢ is eigenvalue of matrix P. We first search eigenvalues
(" a eigenvectors s' (i = 1,2,3) of matrix R. Only real solution is interesting for us. Then we search
the solution of neccesary condition at the form

1 ot

o=1s,
where ¢ € R we determine from condition

2 2 2 _
Oy T Opy +0,, =05

= L
s2 4 53+ 8%

The value of the objective function (25) determines the true solution.

For a specified value of winding angle the solution searching of this problem is very easy. On the
other hand common solution and analytical representation of dependance ¢ = o(«,) is extremely
difficult to find. This is the case when it is appropriate to use the response surface method:'?

From that

See [LAVRENTIEV and LUSTERNIK, 1952] and [ALEXEJEV et al., 1991].
12See e.g. [VENTER et al., 1996] and [VENTER and HAFTKA, 1997].
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i) For values o% = =2 + & € (-2 2) (k =0,1,2,..., N) we search relevant value of dangerous
stress o from above relations.

ii) By a least square method we then search coefficients of elected expression that express this
stress. This expression must meet two conditions: Firstly, to allow satisfactory accuracy, and
secondly, to be advisable and applicable for solution of the problem from item b.

Let us observe accuacy of following model (applicability for solution have led to his selection)

k k

o0 =a,cos’ ok + ap_1 cosP L aFsina® 4+ ...+ a; cos o sin? ! o + ag sin? o (a, € R3,p € N).

Formula for searching of coefficients a; — least square method

For given p our problem contains 3 x p unknowns a, € R?® (i = 1,2,...,p). For one solution of
numerical experiment (for elected winding angle ay,) we have system of equations

k k ap-1

sina®, ..., Isyscosal

ok = Aka = ( Is, 5cos? o, Is.3cosP Lo sin?~t ok, Is.3sin? o® )

Qg

For N solutions of numerical experiment it then is

Y = Aa,
where
o’ A°
o! Al
Y = ) , A=
O"N AN

At the least square method sence it is

a=(ATA) ' ATS.

Neccesary condition from second item (winding angle)

Neccesary condition for problem from second item
oc(a,o(ar))
foJe!

is determined by objective function expression

=0

p
c(a,0()) = E a] cos’ asin”* o (R" cos* o + R* cos® asin a + R* cos® asin® a+
i=0

p
+ R* cosasin® a + R” sin* a) Z af cos’ asin? ™ a,
j=0
or better
p 5
c= Z Za?RQ”aj cos' o7t o gin? i te g
i,j=0 o=1
Thus the neccesary condition has the form

L o >
a_c = Z ZaTR"”aj (—(i+5— 0+ j)cos™t 2 qsin® "It o 4
«

1,j=0 po=1

+(2p—i—j+0—1)cosT ¢ asin® It q) = 0.
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Example
For material characteristics from tab. 1 on p. 43 and S = 10000 MPa? we have the following:
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Fig. 13: Objectiv function for dangerous stress vs. winding angle «
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Fig. 14: Dangerous stress ¢ vs. winding angle «
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Comparison of response surface with input data

Let us compare the response surface with input data (for p = 4) by grafic wiew.

_6-0100 -80 -60 -40 -20 ([)] 0 40 60 80 100 _6—0100 -80 -60 -40 -20 ([) 20 40 60 80 100
al° al®
(a) Dangerous stress o, (b) Dangerous stress oy,

Fig. 15: Dangerous stress 0., and oy, vs. winding angle «

N - a—= |
100 onse suriace -»-

o)
=
T

8—2100—80 -60 -40 -20 0 20 40 60 80 100

al°

Fig. 16: Dangerous stress o, vs. winding angle o

Completion of problem solution — outer optimization

From above it is clear that the minimum value of ojective function for the most dangerous loading
is achieved at +45° of the winding angle.
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