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Problem No. 1

The structure is in the form of one quadrant of a thin circular ring of radius r. One end is
clamped and the other end is loaded by a vertical force F as depict at Fig. 31a. Determine the
vertical displacement under the point of application of the force F . Consider only strain energy
of bending.
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Obrázek 31: The thin quarter circular ring of radius r
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1. Find reactions!

As a first step at dealing with problems of this type it is necessary to attempt to find reactions.
For this purpose we must take supports from their places and instead of them to put reactions,
see Fig. 31b. From this figure we can readily write force equilibrium equations in the horizontal
direction, the vertical direction, and moment equilibrium equation with respect to build-in point,
respectively:

Rx = 0,

Ry − F = 0,

F · r −Mr = 0.

These are three linearly independent equations for three unknowns. Therefore it is possible to
resolve this system of equations as follows.

Rx = 0,

Ry = F,

Mr = F · r.

2. Decide whether the given problem is either statically determinate or statically
indeterminate!

From prior item it is clear that there is no difficulty in determination of reactions from equilibrium
equations and thus this problem is statically determined. This is important for we may use
Castigliano’s theorem.

3. Use Castigliano’s theorem!

Castigliano’s theorem states that the deflection vF at the action point of force F and in the
direction of this force is given by

vF =
∂U

∂F
, (86)

where

U =
∫

l

M2ds

2EI
(87)

is elastic pontial energy (also called strain energy).
It is possible to adapt this expresion for our purposes: Substituting formulation (87) into

expresion (86) we get

vF =
∂

∂F

∫

l

M2ds

2EI
,

and interchanging order of derivative and integration, which is possible provided that integrand
and its derivative are continuous, we arrive at

vF =
∫

l

∂

∂F

(
M2

2EI

)
ds,

and

vF =
∫

l

M ∂M
∂F

EI
ds,

wherein we denote

m =
∂M

∂F
.
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As we will soon see this function m represents bending moment at points of our quarter-circle
ring when this is loaded with force of magnitude 1 (without units) in the point of searched
displacement and in the direction of this displacement. This force is often called the dummy unit
force.

Hence we have obtained so-called Mohr’s integral

vF =
∫

l

Mm

EI
ds.

4. Use Mohr’s integral
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Obrázek 32: The assessment of internal bending moment M

Firstly, we must assess internal bending moment M as a function of some appropriate variable.
It is apparent, see Fig. 34a, that such a variable is angle ϕ. For determination of internal bending
moment we shall use the well-known method of section; cf. Fig. 34b where, utilizing moment
statical equation with respect to point of section S, we obtain

M = Fr sin ϕ.

Secondly, it is necessary to specify the derivative labelled as m. It holds that

m =
∂M

∂F
,

and thus

m =
∂(Fr sin ϕ)

∂F
,

or
m = r sin ϕ.

It is evident that if we applied a dummy unit force at site and direction of searched deflection
we would assess an internal bending moment caused by this force that would be the same as
above.118

118Cf. Fig. 33.
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Obrázek 33: The thin circular ring loaded with dummy unit force

This fact is very important in the cases when there is not a force acting at the spot and at
the direction of searched displacement. In those cases we shall not assess the function m by using
derivative of M but by evaluating internal bending moment caused with dummy unit force.

Finally, we will integrate the Mohr’s integral (note that ds = rdϕ):

vF =
∫

l

Mm

EI
ds =

∫ π
2

0

Fr sin ϕ · r sin ϕ

EI
rdϕ =

πFr3

4EI
.

Problem No. 2

Consider the structure from Problem No. 1 under the same loading, see Fig. 31a. Determine the
horizontal displacement of the point where the force F is applied. Consider only strain energy of
bending.

1. Find reactions!

This item is entirely identical as a item 1 of the mentioned Problem No. 1.119 Consequently we
have

Rx = 0,

Ry = F,

Mr = F · r.

2. Decide whether given problem is either statically determinate or statically
indeterminate!

There was no difficulty in determination of reactions from equilibrium equations and thus this
problem is statically determined. Therefore we can use Castigliano’s theorem, and we use it in
the form of Mohr’s integral.
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Obrázek 34: The assessment of internal bending moment M

3. Use Mohr’s integral

The assessment of internal bending moment M as a function of the appropriate variable was
accomplished at fourth item of the Problem No. 1. on page 135 in the form (cf. Fig. 34b)

M = Fr sin ϕ.
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Obrázek 35: The thin circular ring loaded with dummy unit force

Now, it is necessary to specify the derivative labelled as m. In this pursuit we may apply a
dummy unit force at site and direction of searched deflection. Using the method of sections we
have in accordance with Fig. 35b the following expression:

m = r − r cos ϕ.

Finally, we shall integrate the Mohr’s integral (note again that ds = rdϕ):

v =
∫

l

Mm

EI
ds =

∫ π
2

0

1
EI

Fr sin ϕ ·(r−r cos ϕ) rdϕ =
∫ π

2

0

Fr3

EI
sin ϕ dϕ−

∫ π
2

0

Fr3

EI
sin ϕ cos ϕ dϕ.

119Cf. p. 134.
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The first integral we can integrate with usage of geometrical explication of definite integral.
We know that hatched space bounded with sine at Fig. 36 has unit area; above ϕ axis we consider
this area with positive sign and below ϕ axis with negative sign.
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0
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∫ π/2

0
sinϕ dϕ = 1

Obrázek 36: The thin circular ring loaded with dummy unit force

The second integral ∫ π
2

0

sin ϕ cos ϕ dϕ

is solvable through substitution
x = sin ϕ;

then there is

dx =
dx

dϕ
dϕ = cos ϕ dϕ

and the integral takes form ∫ 1

0

x dx =
x2

2

∣∣∣∣
1

0

=
1
2
.

Consequently,

v =
Fr3

EI

(
1− 1

2

)
=

Fr3

2EI
.

Problem No. 3

A thin circular ring of radius r in the form of one quadrant of a circle lies in x–z plane. It is
fixed to the wall at one end and to the other end a straight bar with length of 0.5r, lying also in
x–z plane, is rigidly attached. Both the ring and the bar have bending rigidity EI and torsional
rigidity GJ . The unsupported end is loaded by a moment, named TB, whose vector is directed
parallel to the x-axis. To emphasize that vector TB at Fig. 37a represents a moment it is furnished
with double arrow. The aim is to determine the displacement vB of the free end, in the Fig. 37a
marked as B, in the direction of y-axis.

1. Find reactions and decide whether given problem is either statically determi-
nate or statically indeterminate!

As was said, a first step at dealing with problems of this type is to attempt to find reactions. For
this purpose we must replace the supports by relevant reactions, see Fig. 37b. From this figure we
can readily write force equilibrium equations in directions of all axes, and moment equilibrium
equations with respect to spinning about all three axes, respectively:

Rx = 0,
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Obrázek 37: The thin quarter circular ring of radius r lying in x–z plane

Ry = 0,

Rz = 0,

T R
x + TB = 0,

T R
y = 0,

and at last
T R

z = 0.

From these we readily have found the conclusion, that our problem is statically determinate with
only one nozero reaction, whose magnitude is

T R
x = −TB .

2. Use Castigliano’s theorem at arrangement of Mohr’s integral!

The inference of the above item enables us to use Mohr’s integral.
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Obrázek 38: Choice of variables

Firstly, we must assess internal impacts awakened with moment TB as a function of some
appropriate variable. It is apparent, see Fig. 38, that such variables are co-ordinate s in the
straight bar and angle ϕ in the curved part. The internal impacts we shall determine by method
of section according to Fig. 39. It is apparent that equilibrium equations of the cut out straight
part run: in the case of force equilibrium at direction of x-axis

Nx = 0,
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Obrázek 39: The assessment of internal impacts

in the case of force equilibrium at direction of y-axis

Vy = 0,

in the case of force equilibrium at direction of z-axis

Vz = 0,

in the case of moment equilibrium with respect to x-axis

TB + Tx = 0,

in the case of moment equilibrium with respect to y-axis

My = 0,

and in the case of moment equilibrium with respect to z-axis

Mz = 0.

For the curved part it reads: in the case of force equilibrium at direction of tangent t

Nt = 0,

in the case of force equilibrium at direction of y-axis

Vy = 0,

in the case of force equilibrium at direction of normal n

Vn = 0,

in the case of moment equilibrium with respect to tangent t

Tt − TB · sin ϕ = 0,

in the case of moment equilibrium with respect to y-axis

My = 0,

and in the case of moment equilibrium with respect to normal n

Mn + TB · cos ϕ = 0.
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From above we see that the only nonzero internal impacts are torque moments at the straight
part and the curved part, respectively

Tx = −TB,

Tt = TB · sin ϕ,

and the bending moment about normal n at the curved part

Mn = −TB · cos ϕ.

At the case of these impacts the Mohr’s integral reads

vB =
∫ R

2

0

Txtx
GJ

ds +
∫ π

2

0

Mnmn

EI
rdϕ +

∫ π
2

0

Tttt
GJ

rdϕ, (88)

where mn, tx, and tt are internal bending moment and internal torque moments, respectively,
that are of the same kind as nonzero real internal impacts established above, produced with
dummy unit force applied at the site and in the direction of searched displacement, see Fig. 40.
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Obrázek 40: The thin ring loaded with dummy unit force
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Obrázek 41: The internal forces and moments inside ring loaded with dummy unit force

We may again determine them by the section method again. It holds, as is seen from Fig. 41,
that equilibrium equations have successive forms: In the case of force equilibrium of the cut out
straight part at direction of x-axis

nx = 0,
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at direction of y-axis
vy + 1 = 0,

and at direction of z-axis
vz = 0.

In the case of moment equilibrium with respect to x-axis

tx = 0,

with respect to y-axis
my = 0,

and in the case of moment equilibrium with respect to z-axis

mz − 1 · s = 0.

For the curved part it reads: In the case of force equilibrium at direction of tangent t

nt = 0,

at direction of y-axis
vy + 1 = 0,

and in the case of force equilibrium at direction of normal n

vn = 0.

In the case of moment equilibrium with respect to tangent t

tt − 1 ·
(
r − r

2
cos ϕ

)
= 0,

with respect to y-axis
my = 0,

and finally in the case of moment equilibrium with respect to normal n

mn + 1 · r
2

sin ϕ = 0.

From here we have the searched quantities

tx = 0,

mn = −r

2
sin ϕ,

and
tt = r − r

2
cos ϕ.

Substituting these expressions into Mohr’s integral (88) we obtain

vB =
1

EI

∫ π
2

0

TB cos ϕ · r
2

sin ϕ · rdϕ +
1

GJ

∫ π
2

0

TB sin ϕ ·
(
r − r

2
cos ϕ

)
rdϕ

or, after same arrangement,

vB =
TBr2

2EI

∫ π
2

0

cos ϕ sin ϕ dϕ +
TBr2

GJ

∫ π
2

0

sin ϕ dϕ− TBr2

2GJ

∫ π
2

0

sin ϕ cos ϕ dϕ

Using conclusions from p. 138 regarding integration antecedent integrals we arrive at

v = TBr2
(

1
4EI

+
3

4GJ

)
.


